Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 6 | 1534-1539

Article title

Cluster Superconductivity in the Magnetoelectric Pb(Fe_{1/2}Sb_{1/2})O₃ Ceramics

Content

Title variants

Languages of publication

EN

Abstracts

EN
We report the observation of cluster (local) superconductivity in the magnetoelectric Pb(Fe_{1/2}Sb_{1/2})O₃ ceramics prepared at a hydrostatic pressure of 6 GPa and temperatures 1200-1800 K to stabilize the perovskite phase. The superconductivity is manifested by an abrupt drop of the magnetic susceptibility at the critical temperature T_{c} ≈7 K. Both the magnitude of this drop and T_{c} decrease with magnetic field increase. Similarly, the low-field paramagnetic absorption measured by EPR spectrometer drops significantly below T_{c} as well. The observed effects and their critical magnetic field dependence are interpreted as manifestation of the superconductivity and the Meissner effect in metallic Pb nanoclusters existing in the ceramics. Their volume fraction and average size were estimated as 0.1-0.2% and 140-150 nm, respectively. The superconductivity related effects disappear after oxidizing annealing of the ceramics.

Year

Volume

131

Issue

6

Pages

1534-1539

Physical description

Dates

published
2017-06
received
2016-11-29
(unknown)
2017-04-04

Contributors

author
  • Institute of Physics AS CR, Cukrovarnicka 10, 162 53 Prague, Czech Republic
  • Institute of Physics, Opole University, Oleska 48, 45-052 Opole, Poland
author
  • Institute of Physics AS CR, Cukrovarnicka 10, 162 53 Prague, Czech Republic
  • Institute of Physics, Opole University, Oleska 48, 45-052 Opole, Poland
author
  • Research Institute of Physics and Faculty of Physics, Southern Federal University, Stachki Ave. 194, 344090, Rostov-on-Don, Russia
  • Scientific-Practical Materials Research Centre, NASB, Minsk, Belarus
author
  • Scientific-Practical Materials Research Centre, NASB, Minsk, Belarus
author
  • Scientific-Practical Materials Research Centre, NASB, Minsk, Belarus
author
  • Research Institute of Physics and Faculty of Physics, Southern Federal University, Stachki Ave. 194, 344090, Rostov-on-Don, Russia
author
  • Institute for Problems of Materials Science, National Academy of Sciences of Ukraine Krjijanovskogo 3, 03142 Kyiv, Ukraine
author
  • Charles University in Prague, Faculty of Mathematics and Physics, Prague 1, Czech Republic
  • Charles University in Prague, Faculty of Mathematics and Physics, Prague 1, Czech Republic

References

  • [1] J. Heber, Nature 459, 28 (2009), doi: 10.1038/459028a
  • [2] H.Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, Y. Tokura, Nat. Mater. 11, 103 (2012), doi: 10.1038/nmat3223
  • [3] L. Li, C. Richter, J. Mannhart, R.C. Ashoori, Nat. Phys. 7, 762 (2011), doi: 10.1038/nphys2080
  • [4] J.A. Bert, B. Kalisky, C. Bell, M. Kim, Y. Hikita, H.Y. Hwang, K.A. Moler, Nat. Phys. 7, 767 (2011), doi: 10.1038/nphys2079
  • [5] A. Ohtomo, H.Y. Hwang, Nature 427, 423 (2004), doi: 10.1038/nature02308
  • [6] G. Khalsa, A.H. MacDonald, Phys. Rev. B 86, 125121 (2012), doi: 10.1103/PhysRevB.86.125121
  • [7] V.A. Stephanovich, V.K. Dugaev, Phys. Rev. B 93, 045302 (2016), doi: 10.1103/PhysRevB.93.045302
  • [8] V.A. Stephanovich, V.K. Dugaev, J. Barnaś, Phys. Chem. Chem. Phys. 18, 2104 (2016), doi: 10.1039/C5CP06627A
  • [9] V.V. Laguta, V.A. Stephanovich, M. Savinov, M. Marysko, R.O. Kuzian, I.V. Kondakova, N.M. Olekhnovich, A.V. Pushkarev, Yu.V. Radyush, I.P. Raevski, S.I. Raevskaya, S.A. Prosandeev, New J. Phys. 16, 113041 (2014), doi: 10.1088/1367-2630/16/11/113041
  • [10] V.A. Stephanovich, V.V. Laguta, Phys. Chem. Chem. Phys. 18, 7229 (2016), doi: 10.1039/C6CP00054A
  • [11] W. Kleemann, V.V. Shvartsman, P. Borisov, A. Kania, Phys. Rev. Lett. 105, 257202 (2010), doi: 10.1103/PhysRevLett.105.257202
  • [12] V.V. Laguta, M.D. Glinchuk, M. Marysko, R.O. Kuzian, S.A. Prosandeev, S.I. Raevskaya, V.G. Smotrakov, V.V. Eremkin, I.P. Raevski, Phys. Rev. B 87, 064403 (2013), doi: 10.1103/PhysRevB.87.064403
  • [13] V.V. Laguta, A.N. Morozovska, E.A. Eliseev, I.D. Raevski, S.I. Raevskaya, E.I. Sitalo, S.A. Prosandeev, L. Bellaiche, J. Mater. Sci. 51, 5330 (2016), doi: 10.1007/s10853-016-9836-4
  • [14] S.A. Prosandeev, I.P. Raevski, S.I. Raevskaya, H. Chen, Phys. Rev. B 92, 220419(R) (2015), doi: 10.1103/PhysRevB.92.220419
  • [15] R. Martinez, R. Palai, H. Huhtinen, J. Liu, J.F. Scott, R.S. Katiyar, Phys. Rev. B 82, 134104 (2010), doi: 10.1103/PhysRevB.82.134104
  • [16] I.P. Raevski, M.S. Molokeev, S.V. Misyul, E.V. Eremin, A.V. Blazhevich, S.P. Kubrin, H. Chen, C.-C. Chou, S.I. Raevskaya, V.V. Titov, D.A. Sarychev, M.A. Malitskaya, Ferroelectrics 475, 52 (2015), doi: 10.1080/00150193.2015.995009
  • [17] I.P. Raevski, V.V. Titov, M.A. Malitskaya, E.V. Eremin, S.P. Kubrin, A.V. Blazhevich, H. Chen, C.-C. Chou, S.I. Raevskaya, I.N. Zakharchenko, D.A. Sarychev, S.I. Shevtsova, J. Mater. Sci. 49, 6459 (2014), doi: 10.1007/s10853-014-8376-z
  • [18] S. Ivanov, R. Tellgren, H. Rundlof, N.W. Thomas, S. Ananta, J. Phys. Condens. Matter 12, 2393 (2000), doi: 10.1088/0953-8984/12/11/305
  • [19] G.M. Rotaru, B. Roessli, A. Amato, S.N. Gvasaliya, C. Mudry, S.G. Lushnikov, T.A. Shaplygina, Phys. Rev. B 79, 184430 (2009), doi: 10.1103/PhysRevB.79.184430
  • [20] S. Chillal, M. Thede, J.F. Litterst, S.N. Gvasaliya, T.A. Shaplygina, S.G. Lushnikov, A. Zheludev, Phys. Rev. B 87, 220403(R) (2013), doi: 10.1103/PhysRevB.87.220403
  • [21] S.V. Misjul, M.S. Molokeev, N.M. Olekhnovich, A.V. Pushkarev, J.V. Radyush, I.P. Raevski, I.N. Safonovet, J. Siberian Federal Univ. Math. Phys. 6, 227 (2013)
  • [22] R.O. Kuzian, I.V. Kondakova, A.M. Daré, V.V. Laguta, Phys. Rev. B 89, 024402 (2014), doi: 10.1103/PhysRevB.89.024402
  • [23] I.P. Raevski, S.P. Kubrin, S.I. Raevskaya, D.A. Sarychev, S.A. Prosandeev, M.A. Malitskaya, Phys. Rev. B 85, 224412 (2012), doi: 10.1103/PhysRevB.85.224412
  • [24] I.P. Raevski, N.M. Olekhnovich, A.V. Pushkarev, Y.V. Radyush, S.P. Kubrin, S.I. Raevskaya, M.A. Malitskaya, V.V. Titov, V.V. Stashenko, Ferroelectrics 444, 47 (2013), doi: 10.1080/00150193.2013.785914
  • [25] C. Rettori, D. Davidov, I. Belash, I. Felner, Phys. Rev. B 36, 4028 (1987), doi: 10.1103/PhysRevB.36.4028
  • [26] K.W. Blazey, K.A. Muller, J.G. Bednorz, W. Berlinger, Phys. Rev. B 36, 7241 (1987), doi: 10.1103/PhysRevB.36.7241
  • [27] S.K. Misra, L. Misiak, J. Phys. Condens. Matter 1, 9499 (1989), doi: 10.1088/0953-8984/1/47/018
  • [28] W. Meissner, R. Ochsenfeld, Naturwissenschaften 21, 787 (1933), doi: 10.1007/BF01504252
  • [29] W.-H. Li, C.C. Yang, F.C. Tsao, K.C. Lee, Phys. Rev. B, 68, 184507 (2003), doi: 10.1103/PhysRevB.68.184507
  • [30] P. Zolotavin, Ph. Guyot-Sionnest, ACS Nano 4, 5599 (2010), doi: 10.1021/nn102009g
  • [31] Z. Trybuła, J.E. Drumheller, J. Appl. Phys. 67, 5041 (1990), doi: 10.1063/1.344690
  • [32] Z. Trybuła, J. Stankowski, Phys. Rev. B 41, 4743 (1990), doi: 10.1103/PhysRevB.41.4743
  • [33] R.S. Rubins, J.E. Drumheller, Z. Trybuła, Phys. Rev B 43, 10472 (1991), doi: 10.1103/PhysRevB.43.10472
  • [34] A.S. Kheifets, A.I. Veinger, Physica C 165, 491 (1990), doi: 10.1016/0921-4534(90)90387-T
  • [35] These results will be published elsewhere
  • [36] R.V. Shpanchenko, V.V. Chernaya, A.A. Tsirlin, P.S. Chizhov, D.E. Sklovsky, E.V. Antipov, E.P. Khlybov, V. Pomjakushin, A.M. Balagurov, E.E. Kaul, C. Geibel, Chem. Mater. 16, 3267 (2004), doi: 10.1021/cm049310x
  • [37] A.P. Menushenkov, A.V. Tsvyashchenko, D.V. Eremenko, K.V. Klementev, A.V. Kuznetsov, V.N. Trofimov, L.N. Fomichev, Phys. Solid State 43, 613 (2001), doi: 10.1134/1.1365979
  • [38] P.C.E. Stamp, E.M. Chudnovsky, B. Barbara, Int. J. Mod. Phys. B 6, 1355 (1992), doi: 10.1142/S0217979292000670

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv131n621kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.