PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 6 | 1525-1528
Article title

Temperature Monitoring during Focused Ultrasound Treatment by Means of the Homodyned K Distribution

Content
Title variants
Languages of publication
EN
Abstracts
EN
Temperature monitoring is essential for various medical treatments. In this work, we investigate the impact of temperature on backscattered ultrasound echo statistics during a high intensity focused ultrasound treatment. A tissue mimicking phantom was heated with a spherical ultrasonic transducer up to 56°C in order to imitate tissue necrosis. During the heating, an imaging scanner was used to acquire backscattered echoes from the heated region. These data was then modeled with the homodyned K distribution. We found that the best temperature indicator can be obtained by combining two parameters of the model, namely the backscattered echo mean intensity and the effective number of scatterers per resolution cell. Next, ultrasonic thermometer was designed and used to create a map of the temperature induced within the tissue phantom during the treatment.
Publisher

Year
Volume
131
Issue
6
Pages
1525-1528
Physical description
Dates
published
2017-06
received
2016-10-03
(unknown)
2017-05-19
Contributors
author
  • Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, A. Pawińskiego 5B, 02-106, Warsaw, Poland
author
  • Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, A. Pawińskiego 5B, 02-106, Warsaw, Poland
author
  • Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, A. Pawińskiego 5B, 02-106, Warsaw, Poland
author
  • Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, A. Pawińskiego 5B, 02-106, Warsaw, Poland
References
  • [1] J. Foiret, K.W. Ferrara, PLoS One 10, (2015), doi: 10.1371/journal.pone.0134938
  • [2] L. Poissonnier, J.Y. Chapelon, O. Rouvière, L. Curiel, R. Bouvier, X. Martin, J.M. Dubernard, A. Gelet, Eur. Urol. 51, 381 (2007), doi: 10.1182/blood-2004-10-4135
  • [3] J. Kennedy, Nature Rev. Canc. 5, 321 (2005), doi: 10.1038/nrc1591
  • [4] E.A. Stewart, J. Rabinovici, C.M.C. Tempany, Y. Inbar, L. Regan, B. Gastout, G. Hesley, H.S. Kim, S. Hengst, W.M. Gedroye, Fertil. Steril. 85, 22 (2006), doi: 10.1016/j.fertnstert.2005.04.072
  • [5] M.A. Lewis, R.M. Staruch, R. Chopra, Int. J. Hyperth. 31, 163 (2015), doi: 10.1016/j.fertnstert.2005.04.072
  • [6] J.W. Trobaugh, R.M. Arthur, W.L. Straube, E.G. Moros, Ultrasound Med. Biol. 34, 289 (2008), doi: 10.1016/j.ultrasmedbio.2007.07.015
  • [7] J. Xia, Q. Li, H.L. Liu, W.S. Chen, P.H. Tsui, Comput. Math. Methods Med. 2013, 682827 (2013), doi: 10.1155/2013/682827
  • [8] X. Li, G. Ghoshal, R.J. Lavarello, M.L. Oelze, Med. Phys. 52901, 51 (2014), doi: 10.1118/1.4870964
  • [9] R.M. Arthur, J.W. Trobaugh, W.L. Straube, E.G. Moros, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1644 (2005), doi: 10.1109/TUFFC.2005.1561620
  • [10] Z. Zhou, S. Wu, C.Y. Wang, H.Y. Ma, C.C. Lin, P.H. Tsui, PLoS One 10, (2015), doi: 10.1371/journal.pone.0118030
  • [11] P.-H. Tsui, Y.-C. Shu, W.-S. Chen, H.-L. Liu, I.-T. Hsiao, Y.-T. Chien, Med. Phys. 39, 2369 (2012), doi: 10.1118/1.3700235
  • [12] P.M. Shankar, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 727 (2000), doi: 10.1109/58.842062
  • [13] B. Gambin, E. Kruglenko, Acta Phys. Pol. A 128, A-72 (2015), doi: 10.12693/APhysPolA.128.A-72
  • [14] M. Byra, B. Gambin, Hydroacoustics 18, 17 (2015)
  • [15] F. Destrempes, G. Cloutier, Ultrasound Med. Biol. 36, 1037 (2010), doi: 10.1016/j.ultrasmedbio.2010.04.001
  • [16] M.L. Oelze, J. Mamou, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63, 336 (2016), doi: 10.1109/TUFFC.2015.2513958
  • [17] M. Byra, A. Nowicki, H. Wróblewska-Piotrzkowska, K. Dobruch-Sobczak, Med. Phys. 43, 5561 (2016), doi: 10.1118/1.4962928
  • [18] I. Trop, F. Destrempes, M. El Khoury, A. Robidoux, L. Gaboury, L. Allard, B. Chayer, G. Cloutier, Radiology 275, 666 (2015), doi: 10.1148/radiol.14140318
  • [19] E. Kruglenko, B. Gambin, L. Cieślik, Hydroacoustics 16, 121 (2013)
  • [20] B. Gambin, E. Kruglenko, T. Kujawska, M. Michajłow, Acta Phys. Pol. A 119, 950 (2011), doi: 10.12693/APhysPolA.119.950
  • [21] T. Kujawska, W. Secomski, M. Byra, M. Postema, A. Nowicki, Ultrasonics 76 (2017), doi: 10.1016/j.ultras.2016.12.008
  • [22] E. Jakeman, R.J.A. Tough, J. Opt. Soc. Am. A 4, 1764 (1987), doi: 10.1364/JOSAA.4.001764
  • [23] D.P. Hruska, M.L. Oelze, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 2471 (2009), doi: 10.1109/TUFFC.2009.1334
  • [24] A. Nowicki, H. Piotrzkowska-Wroblewska, J. Litniewski, M. Byra, B. Gambin, E. Kruglenko, K. Dobruch-Sobczak, in: 2015 IEEE Int. Ultrason. Symp. (IUS), Taipei (Taiwan), 2015, art. 417, doi: 10.1109/ULTSYM.2015.0417
  • [25] P.-H. Tsui, C.-C. Chang, Ultrasound Med. Biol. 33, 608 (2007), doi: 10.1016/j.ultrasmedbio.2006.10.005
  • [26] P.M. Shankar, V.A. Dumane, J.M. Reid, V. Genis, F. Forsberg, C.W. Piccoli, B.B. Goldberg, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 569 (2001), doi: 10.1109/58.911740
  • [27] M. Byra, A. Nowicki, H. Piotrzkowska-Wroblewska, J. Litniewski, K. Dobruch-Sobczak, in: 2015 IEEE Int. Ultrason. Symp. (IUS), Taipei (Taiwan), 2015, art. 408, doi: 10.1109/ULTSYM.2015.0408
  • [28] C. Simon, P. VanBaren, E.S. Ebbini, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 1088 (1998), doi: 10.1109/58.710592
  • [29] A. Józefczak, K. Kaczmarek, T. Hornowski, M. Kubovcikowa, Z. Rozynek, M. Timko, A. Skumiel, Appl. Phys. Lett. 108, 263701 (2016), doi: 10.1063/1.4955130
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv131n619kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.