PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 6 | 1512-1518
Article title

Conformational Stability, TGA, and Molecular Docking Investigations of p-Coumaric Acid with Special Relevance to Anti-Cancer and Antibacterial Activity

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this work an attempt is made to analysis of the possible different conformers of p-coumaric acid (PCA) by using density functional method. The total energy of four possible conformers were calculated by using B3LYP/6-311G(d,p) method. Computational result identifies that the most stable conformer of PCA is C2. The formation of inter- and intra-molecular hydrogen bonding between -OH and -COOH group gave the evidence for dimer formation for PCA molecule. The highest occupied-lowest unoccupied molecular orbital analysis shows that the negative electrostatic region situated over the -COOH group and positive electrostatic potential region are localized on ring system and all hydrogen. The PCA has been screened to anti-microbial activity and found to exhibit anti-bacterial effects. Molecular docking results suggest that PCA may exhibit inhibitory activity against lung cancer protein and may act as potential against lung cancer.
Publisher

Year
Volume
131
Issue
6
Pages
1512-1518
Physical description
Dates
published
2017-06
received
2016-09-10
(unknown)
2017-03-22
Contributors
author
  • Research Scholar, Manonmaniam Sundaranar University, Thirunelveli 627012, India
  • Department of Physics, St. Joseph's College of Arts and Science (Autonomous), Cuddalore, Tamilnadu 607 001, India
author
  • Department of Physics, Kanchi Mamunivar Center for Post Graduate Studies and Research, Lawspet, Puducherry 605 008, India
author
  • Department of Physics, St. Joseph's College of Arts and Science (Autonomous), Cuddalore, Tamilnadu 607 001, India
  • Research Scholar, Bharathiyar University, Coimbatore, India
author
  • Department of Physics, St. Joseph's College of Arts and Science (Autonomous), Cuddalore, Tamilnadu 607 001, India
References
  • [1] A. Svobodova, J. Psotova, D. Walterova, Biomed. Pap. 147, 137 (2003)
  • [2] C. Alasalvar, J.M. Gregor, D. Hang, P.C. Quantick, F. Shahidi, J. Agric. Food Chem. 49, 1410 (2001), doi: 10.1021/jf000595h
  • [3] F. Shahidi, C.A. Chandrasekara, Phytochem. Rev. 9, 147 (2010)
  • [4] M. Kalinowska, B. Laderiere, P. Champagne, M.K. Sadowy, W. Lewandowski, Spectrochim. Acta A 103, 264 (2013), doi: 10.1016/j.saa.2012.10.060
  • [5] L.R. Ferguson, S.T. Zhu, P.J. Harris, Mol. Nutr. Food Res. 49, 585 (2005), doi: 10.1002/mnfr.200500014
  • [6] K. Kikugawa, T. Hakamada, M. Hasunuma, T. Kurechi, J. Agric. Food Chem. 3, 780 (1983), doi: 10.1021/jf00118a025
  • [7] N. Ravikumar, G. Gaddamanugu, K.A. Solomon, J. Mol. Struct. 1033, 272 (2013), doi: 10.1016/j.molstruc.2012.10.029
  • [8] M.K. Sadowy, R. Swislocka, H. Lewandowska, J. Piekut, W. Lewandowski, Molecules 13, 3146 (2015), doi: 10.3390/molecules20023146
  • [9] N. Kumar, V. Pruthi, N. Goel, J. Mol. Struct. 1085, 242 (2015), doi: 10.1016/j.molstruc.2014.12.064
  • [10] V. Arjunan, R. Anitha, M.K. Marchewka, S. Mohan, Haifeng Yang, J. Mol. Struct. 1080, 122 (2015), doi: 10.1016/j.molstruc.2014.09.083
  • [11] A. Garzón, I. Bravo, A.J. Barbero, J. Albaladejo, J. Agric. Food Chem. 62, 9705 (2014), doi: 10.1021/jf5011148
  • [12] C. Giacomelli, F.S. Miranda, N.S. Goncalves, A. Spinelli, Redox Rep. 9, 263 (2004), doi: 10.1179/135100004225006038
  • [13] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Suzerain, M.A. Robb, J.R. Cheeseman Jr., J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 09, Gaussian Inc., Pittsburgh 2003 http://gaussian.com/g_prod/g09.htm
  • [14] G.A. Petersson, M.A. Allaham, J. Chem. Phys. 94, 6081 (1991), doi: 10.1063/1.460447
  • [15] G.A. Petersson, A. Bennett, T.G. Tensfeldt, M.A. Allaham, W.A. Shirley, J. Mantzaris, J. Chem. Phys. 89, 2193 (1988), doi: 10.1063/1.455064
  • [16] M. Szafran, A. Komasa, E.B. Adamska, J. Mol. Struct. Theochem. 827, 101 (2007), doi: 10.1016/j.molstruc.2006.05.012
  • [17] C. James, A. Amal Raj, R. Reghunathan, I. Hubert Joe, V.S. Jayakumar, J. Raman Spectrosc. 37, 1381 (2006), doi: 10.1002/jrs.1554
  • [18] S. Raghunathan, V. Pattabhi, Acta Crystallogr. B 35, 214 (1979), doi: 10.1107/S056774087900306X
  • [19] S. Raghunathan, V. Pattabhi, Acta Crystallogr. B 37, 1299 (1981), doi: 10.1107/S0567740881005736
  • [20] K. Fukui, Science 218, 474 (1982), doi: 10.1126/science.7123245
  • [21] S. Gunasekaran, R.A. Balaji, S. Kumaran, G. Anand, S. Srinivasan, Can. J. Anal. Sci. Spectrosc. 53, 149 (2008)
  • [22] N.M. O'Boyle, A.L.T. Tenderhole, K.M. Langer, J. Comp. Chem. 29, 839 (2008), doi: 10.1002/jcc.20823
  • [23] Y. Sheena Mary, H.T. Varghese, C.Y. Panicker, T. Thieman, A.A.Al. Saddi, S.A. Po Poola, C.V. Alsenoy, Y.A. Jasem, Spectrochim. Acta A 150, 533 (2015), doi: 10.1016/j.saa.2015.05.092
  • [24] T.A. Koopmans, Physica 1, 104 (1934), doi: 10.1016/S0031-8914(34)90011-2
  • [25] R.J. Parr, R.G. Person, J. Am. Chem. Soc. 105, 7152 (1983), doi: 10.1021/ja00364a005
  • [26] A. Urbaniak, M. Szela, M. Molski, Comput. Theor. Chem. 1012, 33 (2013), doi: 10.1016/j.comptc.2014.03.016
  • [27] M. Govindharajan, K. Ganesan, S. Periandy, M. Karaback, Spectrochim. Acta A Mol. Biomol. Spectr. 79, 646 (2010), doi: 10.1016/j.saa.2011.03.051
  • [28] S. Xavier, S. Periandy, K. Carthigayan, S. Sebastian, J. Mol. Struct. 1125, 204 (2016), doi: 10.1016/j.molstruc.2016.06.071
  • [29] SDBS Web: National Insitute of Advanced Industrial Science and Technology, 18.7.2016 http://sdbs.db.aist.go.jp
  • [30] G.M. Morris, R. Huey, W. Lindstrom, J. Comput. Chem. 30, 2785 (2009), doi: 10.1002/jcc.21256
  • [31] G.M. Morris, R. Huey, A.J. Olson, Curr. Protoc. Bioinf. 23, 13514 (2007)
  • [32] M.M. Garrett, S.G. David, S.H. Robert, H. Ruth, E.H. William, K.B. Richard, J.O. Arthur, J. Comput. Chem. 19, 1639 (1998), doi: 10.1002/(SICI)1096-987X(19981115)19:14%3C1639::AID-JCC10%3E3.0.CO;2-B
  • [33] H. Ruth, M.M. Garrett, J.O. Arthur, S.G. David, J. Comput. Chem. 28, 1145 (2007), doi: 10.1021/ci900175n
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv131n617kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.