Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 6 | 1497-1506

Article title

Comparative Morphological Analysis of Graphene on Copper Substrate obtained by CVD from a Liquid Precursor

Content

Title variants

Languages of publication

EN

Abstracts

EN
Graphene film has been produced on untreated Cu substrate by a chemical vapor deposition technique in ambient pressure with liquid ethanol serving as the carbon precursor. The obtained material has been subjected to morphological study, directly on Cu substrate, by means of optical microscopy, scanning electron microscopy, atomic force microscopy, and a detailed Raman analysis. As a benchmark material, graphene obtained on Cu by a conventional CVD from gaseous methane was used. This simple experimental setup has proved to enable obtaining large area graphene samples with nearly 100% substrate coverage and large domains of one carbon layer. As compared to graphene from gaseous precursor, the presented approach resulted in visibly more defects and impurities. These imperfections are due to more complex precursor molecular structure and lack of Cu pretreatment with hydrogen, the later cause being easy to eliminate in course of further optimization of the method. The described approach can be regarded as a viable, low-cost, and experimentally simple alternative for the existing techniques of producing large area graphene. By providing direct comparison with the conventional method, the paper's intention is to provide deeper insight and to fill gap in the understanding of mechanisms involved in graphene formation on copper.

Keywords

EN

Contributors

author
  • Institute of Physics, Faculty of Technical Physics, Poznań University of Technology, Πotrowo 3, 60-965 Poznań, Poland
author
  • Institute of Non-Ferrous Metals Division in Poznań, Central Laboratory of Batteries and Cells, Forteczna 12, 61-362 Poznań, Poland
author
  • Institute of Non-Ferrous Metals Division in Poznań, Central Laboratory of Batteries and Cells, Forteczna 12, 61-362 Poznań, Poland
  • Institute of Non-Ferrous Metals Division in Poznań, Central Laboratory of Batteries and Cells, Forteczna 12, 61-362 Poznań, Poland
  • Institute of Non-Ferrous Metals Division in Poznań, Central Laboratory of Batteries and Cells, Forteczna 12, 61-362 Poznań, Poland
  • Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw, Poland

References

  • [1] A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007), doi: 10.1038/nmat1849
  • [2] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004), doi: 10.1126/science.1102896
  • [3] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Solid State Commun. 146, 351 (2008), doi: 10.1016/j.ssc.2008.02.024
  • [4] H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, ACS Nano 2, 463 (2008), doi: 10.1021/nn700375n
  • [5] J.K. Wassei, R.B. Kaner, Mater. Today 13, 52 (2010), doi: 10.1016/S1369-7021(10)70034-1
  • [6] D.A. Areshkin, C.T. White, Nano Lett. 7, 3253 (2007), doi: 10.1021/nl070708c
  • [7] Y.M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.Y. Chiu, A. Grill, P. Avouris, Science 327, 662 (2010), doi: 10.1126/science.1184289
  • [8] Y.M. Lin, K.A. Jenkins, A. Valdes-Garcia, J.P. Small, D.B. Farmer, P. Avouris, Nano Lett. 9, 422 (2008), doi: 10.1021/nl803316h
  • [9] M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Nano Lett. 8, 3498 (2008), doi: 10.1021/nl802558y
  • [10] C. Wang, D. Li, C.O. Too, G.G. Wallace, Chem. Mater. 21, 2604 (2009), doi: 10.1021/cm900764n
  • [11] J. Xiao, D. Mei, X. Li, W. Xu, D. Wang, G.L. Graff, W.D. Bennett, Z. Nie, L.V. Saraf, I.A. Aksay, J. Liu, J.G. Zhang, Nano Lett. 11, 5071 (2011), doi: 10.1021/nl203332e
  • [12] M.E. Suk, N.R. Aluru, J. Phys. Chem. Lett. 1, 1590 (2010), doi: 10.1021/jz100240r
  • [13] E. Sutter, P. Albrecht, F.E. Camino, P. Sutter, Carbon 48, 4414 (2010), doi: 10.1016/j.carbon.2010.07.058
  • [14] S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006), doi: 10.1038/nature04969
  • [15] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Nature 457, 706 (2009), doi: 10.1038/nature07719
  • [16] S.Y. Kwon, C.V. Ciobanu, V. Petrova, V.B. Shenoy, J. Bareno, V. Gambin, I. Petrov, S. Kodambaka, Nano Lett. 9, 3985 (2009), doi: 10.1021/nl902140j
  • [17] F.J. Himpsel, K. Christmann, P. Heimann, D.E. Eastman, P.J. Feibelman, Surf. Sci. 115, L159 (1982), doi: 10.1016/0039-6028(82)90379-X
  • [18] K. Celebi, M.T. Cole, J.W. Choi, N. Rupeshinge, F. Wyczisk, P. Legagneux, N. Rupesinghe, J. Robertson, K.B.K. Teo, H.G. Park, Nano Lett. 13, 967 (2013), doi: 10.1021/nl303934v
  • [19] G. Deokar, J. Avila, I. Razado-Colambo, J.L. Codron, C. Boyaval, E. Galopin, M.C. Asensio, D. Vignaud, Carbon 89, 82 (2015), doi: 10.1016/j.carbon.2015.03.017
  • [20] C. Mattevi, H. Kim, M. Chhowalla, J. Mater. Chem. 21, 3324 (2011), doi: 10.1039/C0JM02126A
  • [21] X. Dong, P. Wang, W. Fang, C.Y. Su, Y.H. Chen, L.J. Li, W. Huang, P. Chen, Carbon 49, 3672 (2011), doi: 10.1016/j.carbon.2011.04.069
  • [22] A. Guermoune, T. Chari, F. Popescu, S.S. Sabri, J. Guillemette, H.S. Skulason, T. Szkopek, M. Siaj, Carbon 49, 4204 (2011), doi: 10.1016/j.carbon.2011.05.054
  • [23] Y. Miyata, K. Kamon, K. Ohashi, R. Kitaura, M. Yoshimura, H. Shinohara, Appl. Phys. Lett. 96, 263105 (2010), doi: 10.1063/1.3458797
  • [24] Z. Li, P. Wu, C. Wang, X. Fan, W. Zhang, X. Zhai, C. Zeng, Z. Li, J. Yang, J. Hou, ACS Nano 5, 3385 (2011), doi: 10.1021/nn200854p
  • [25] A. Srivastava, C. Galande, L. Ci, L. Song, C. Rai, D. Jariwala, K.F. Kelly, P.M. Ajayan, Chem. Mater. 22, 3457 (2010), doi: 10.1021/cm101027c
  • [26] C.B. Flores, D.M. López, World J. Condens. Matter Phys. 1, 157 (2011), doi: 10.4236/wjcmp.2011.14023
  • [27] H. Gao, Z. Liu, L. Song, W. Guo, W. Gao, L. Ci, A. Rao, W. Quan, R. Vajtai, P.M. Ajayan, Nanotechnology 23, 275605 (2012), doi: 10.1088/0957-4484/23/27/27560
  • [28] W. Gan, N. Han, C. Yang, P. Wu, Q. Liu, W. Zhu, S. Chen, C. Wu, M. Habib, Y. Sang, Z. Muhammad, J. Zhao, L. Song, ACS Nano 11, 1371 (2017), doi: 10.1021/acsnano.6b06144
  • [29] G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M.C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, W. Mehr, ACS Nano 9, 4776 (2015), doi: 10.1021/acsnano.5b01261
  • [30] D. Nečas, P. Klapetek, Open Phys. 10, 181 (2012), doi: 10.2478/s11534-011-0096-2
  • [31] R. Muńoz, C. Gómez-Aleixandre, Chem. Vap. Deposit. 19, 297 (2013), doi: 10.1002/cvde.201300051
  • [32] Y. Lee, S. Bae, H. Jang, S. Jang, S.E. Zhu, S.H. Sim, Y. Song, B.H. Hong, J.H. Ahn, Nano Lett. 10, 490 (2010), doi: 10.1021/nl903272n
  • [33] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Solid State Commun. 143, 44 (2007), doi: 10.1016/j.ssc.2007.01.050
  • [34] H. Wang, G. Wang, P. Bao, S. Yang, W. Zhu, X. Xie, W.J. Zhang, J. Am. Chem. Soc. 134, 3627 (2012), doi: 10.1021/ja2105976
  • [35] Y. Hao, M.S. Bharathi, L. Wang, Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, H. Ramanarayan, C.W. Magnuson, E. Tutuc, B.I. Yakobson, K.F. McCarty, Y.W. Zhang, P. Kim, J. Hone, L. Colombo, R.S. Ruoff, Science 342, 720 (2013), doi: 10.1126/science.1243879
  • [36] D. Dong, P. Solís-Fernández, H. Hibino, H. Ago, ACS Nano 10, 11196 (2016), doi: 10.1021/acsnano.6b06265
  • [37] D.L. Duong, G.H. Han, S.M. Lee, F. Gunes, E.S. Kim, S.T. Kim, H. Kim, Q.H. Ta, K.P. So, S.J. Yoon, S.J. Chae, Y.W. Jo, M.H. Park, S.H. Chae, S.C. Lim, J.Y. Choi, Y.H. Lee, Nature 490, 235 (2012), doi: 10.1038/nature11562
  • [38] Y.A. Wu, A.W. Robertson, F. Schäffel, S.C. Speller, J.H. Warner, Chem. Mater. 23, 4543 (2011), doi: 10.1021/cm201823s
  • [39] Y. Yang, W. Rigdon, X. Huang, X. Li, Sci. Rep. 3, 2086 (2013), doi: 10.1038/srep02086
  • [40] Z. Tu, Z. Liu, Y. Li, E. Yang, L. Zhang, Z. Zhao, C. Xu, S. Wu, H. Liu, H. Yang, P. Richard, Carbon 73, 252 (2014), doi: 10.1016/j.carbon.2014.02.061
  • [41] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Science 324, 1312 (2009), doi: 10.1126/science.1171245
  • [42] D. Yoon, Y.W. Son, H. Cheong, Nano Lett. 11, 3227 (2011), doi: 10.1021/nl201488g
  • [43] F.C. Nix, D. MacNair, Phys. Rev. 60, 597 (1941), doi: 10.1103/PhysRev.60.597
  • [44] M.K. Blees, A.W. Barnard, P.A. Rose, S.P. Roberts, K.L. McGill, P.Y. Huang, A.R. Ruyack, J.W. Kevek, B. Kobrin, D.A. Muller, P.L. McEuen, Nature 524, 204 (2015), doi: 10.1038/nature14588
  • [45] P. Nemes-Incze, Z. Osvatha, K. Kamaras, L.P. Biro, Carbon 46, 1435 (2008), doi: 10.1016/j.carbon.2008.06.022
  • [46] G. Fisichella, S. Di Franco, P. Fiorenza, R.L. Nigro, F. Roccaforte, C. Tudisco, G.G. Condorelli, N. Piluso, N. Spartŕ, S.L. Verso, C. Accardi, C. Tringali, S. Ravesi, F. Giannazzo, Beilstein J. Nanotechnol. 4, 234 (2013), doi: 10.3762/bjnano.4.24
  • [47] F. Giannazzo, S. Sonde, V. Raineri, E. Rimini, Nano Lett. 9, 23 (2009), doi: 10.1021/nl801823n
  • [48] M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Nano Lett. 10, 751 (2010), doi: 10.1021/nl904286r
  • [49] A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006), doi: 10.1103/PhysRevLett.97.187401
  • [50] T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D.M. Basko, C. Galiotis, N. Marzari, K.S. Novoselov, A.K. Geim, A.C. Ferrari, Phys. Rev. B 79, 205433 (2009), doi: 10.1103/PhysRevB.79.205433
  • [51] F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53, 1126 (1970), doi: 10.1063/1.1674108
  • [52] C. Soldano, A. Mahmood, E. Dujardin, Carbon 48, 2127 (2010), doi: 10.1016/j.carbon.2010.01.058
  • [53] A.C. Ferrari, Solid State Commun. 143, 47 (2007), doi: 10.1016/j.ssc.2007.03.052
  • [54] L.G. Cançado, A. Jorio, E.H. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Nano Lett. 11, 3190 (2011), doi: 10.1021/nl201432g
  • [55] M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cançado, A. Jorio, R. Saito, Phys. Chem. Chem. Phys. 9, 1276 (2007), doi: 10.1039/B613962K
  • [56] L. Fan, J. Zou, Z. Li, X. Li, K. Wang, J. Wei, M. Zhong, D. Wu, Z. Xu, H. Zhu, Nanotechnology 23, 115605 (2012), doi: 10.1088/0957-4484/23/11/115605
  • [57] Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C.K. Koo, Z. Shen, J.T.L. Thong, Small 6, 195 (2010), doi: 10.1002/smll.200901173
  • [58] O. Frank, M. Mohr, J. Maultzsch, C. Thomsen, I. Riaz, R. Jalil, K.S. Novoselov, G. Tsoukleri, J. Parthenios, K. Papagelis, L. Kavan, C. Galiotis, ACS Nano 5, 2231 (2011), doi: 10.1021/nn103493g
  • [59] O. Frank, J. Vejpravova, V. Holy, L. Kavan, M. Kalbac, Carbon 68, 440 (2014), doi: 10.1016/j.carbon.2013.11.020
  • [60] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Nano Lett. 7, 238 (2007), doi: 10.1021/nl061702a
  • [61] L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhăes-Paniago, M.A. Pimenta, Appl. Phys. Lett. 88, 163106 (2006), doi: 10.1063/1.2196057

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv131n615kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.