Title variants
Languages of publication
Abstracts
The article presents a method for determining the content and temperature on the basis of spectra from remote measurements. The technique uses measurements of a high resolution radiation spectrum that allows the visibility of the individual rotational lines of gases such as CO₂, used here in the range of 2470-2495 cm¯¹. At the same time a new algorithm is applied of pre-processing the spectrum, involving the use of multiple ratios of intensity at several wavenumbers as input to an inverse model based on neural networks. Due to it, the dimensionality of the input can significantly be reduced. Additionally, the data interpreted do not have to be measured in units of spectral radiance. Thus only the calibration of the sensitivity of the spectrometer at various wavelengths is required. The neural models were constructed on the basis of data from the simulation. The proposed method works with a uniform layer of radiating gas for determining the temperature and CO₂ content. For a non-uniform layer it is possible to determine the line-of-sight temperature profile and average gas content. The method can be extended to different spectral ranges and to other gases present in substantial quantities in the exhaust gases of various processes.
Journal
Year
Volume
Issue
Pages
1454-1459
Physical description
Dates
published
2017-06
received
2016-05-16
(unknown)
2017-05-23
Contributors
author
- Institute of Electronics and Information Technology, Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland
References
- [1] C. Oppenheimer, P. Francis, M. Burton, A.J.H. Maciejewski, L. Boardman, Appl. Phys. B 67, 505 (1998), doi: 10.1007/s003400050536
- [2] C. Oppenheimer, P.R. Kyle, J. Volcanol. Geotherm. Res. 177, 743 (2008), doi: 10.1016/j.jvolgeores.2007.08.022
- [3] M.R. Rhoby, D.L. Blunck, K.C. Gross, Opt. Expr. 22, 21600 (2014), doi: 10.1364/OE.22.021600
- [4] J.L. Harley, B.A. Rankin, D.L. Blunck, J.P. Gore, K.C. Gross, Opt. Lett. 39, 2350 (2014), doi: 10.1364/OL.39.002350
- [5] O. Egorov, O. Voitsekhovskaya, D. Kashirskii, R. Tsvyk, V. Sazanovich, M. Sherstobitov, J. Quant. Spectrosc. Radiat Transf. 147, 38 (2014), doi: 10.1016/j.jqsrt.2014.05.001
- [6] G. Zhang, J. Liu, Z. Xu, Y. He, R. Kan, Appl. Phys. B 122, 2 (2016), doi: 10.1007/s00340-015-6289-4
- [7] X. Zhou, J.B. Jeffries, R.K. Hanson, Appl. Phys. B Lasers Opt. 81, 711 (2005), doi: 10.1007/s00340-005-1934-y
- [8] X. An, A.W. Casweel, J.J. Lipor, S.T. Sanders, Appl. Spectrosc. 69, 464 (2012), doi: 10.1364/LACSEA.2012.LT6B.11
- [9] X. Liu, J.B. Jeffries, R.K. Hanson, K.M. Hinckley, M.A. Woodmansee, Appl. Phys. B 82, 469 (2006), doi: 10.1007/s00340-005-2078-9
- [10] K. Wu, F. Li, X. Cheng, Y. Yang, X. Lin, Y. Xia, Appl. Phys. B 117, 659 (2014), doi: 10.1007/s00340-014-5880-4
- [11] T. Cai, G. Gao, M. Wang, G. Wang, Y. Liu, X. Gao, Appl. Phys. B 118, 471 (2015), doi: 10.1007/s00340-015-6015-2
- [12] L. Ma, X. Li, W. Cai, S. Roy, J.R. Gord, S.T. Sanders, Appl. Spectrosc. 64, 1274 (2010), doi: 10.1366/000370210793335052
- [13] M.P. Szczepanski, A.W. Fountain, Appl. Spectrosc. 54, 197 (2000), doi: 10.1366/0003702001949393
- [14] S. Usseglio, K. Thorshaug, A. Karlson, I.M. Dahl, C.J. Nielsen, K.-J. Jens, E. Tangstad, Appl. Spectrosc. 64, 141 (2010), doi: 10.1366/000370210790619564
- [15] M. Strojnik, G. Paez, Opt. Expr. 23, A1259 (2015), doi: 10.1364/OE.23.0A1259
- [16] H.J. Nam, O.J. Kwon, Infrared Phys. Technol. 67, 283 (2014), doi: 10.1016/j.infrared.2014.08.003
- [17] T. Fleckl, H. Jager, I. Obernberger, J. Phys. D Appl. Phys. 38, 3138 (2002), doi: 10.1088/0022-3727/35/23/315
- [18] T. Ren, M.F. Modest, J. Thermophys. Heat Transf. 90, 1178 (2015), doi: 10.2514/1.T4561
- [19] F. Onofri, M. Krzysiek, S. Barbosa, V. Messager, K.F. Ren, J. Mroczka, Appl. Opt. 50, 5759 (2011), doi: 10.1364/AO.50.005759
- [20] F. Onofri, M. Krzysiek, J. Mroczka, Opt. Lett. 32, 2070 (2007), doi: 10.1364/OL.32.002070
- [21] J. Mroczka, D. Wysoczański, Opt. Eng. 39, 763 (2000), doi: 10.1117/1.602425
- [22] M.M. Li, W. Guo, B. Verma, K. Tickle, J. O'Connor, Neural Comput. Appl. 18, 423 (2009), doi: 10.1007/s00521-008-0219-x
- [23] S. Yin, S.X. Ding, X. Xie, H. Luo, IEEE Trans. Industr. Electron. 61, 6418 (2014), doi: 10.1109/TIE.2014.2301773
- [24] E. Garcia-Cuesta, I.M. Galvan, A.J. de Castro, Eng. Appl. Artific. Intellig. 21, 26 (2008), doi: 10.1016/j.engappai.2007.03.005
- [25] H. Schiller, Neural Networks 20, 479 (2007), doi: 10.1016/j.neunet.2007.04.022
- [26] M. van der Baan, C. Jutten, Geophysics 65, 1032 (2000), doi: 10.1190/1.1444797
- [27] P. Ramuhalli, L. Udpa, S.S. Udpa, J. Appl. Phys. 93, 8274 (2003), doi: 10.1063/1.1558693
- [28] J. Ravi, Y. Lu, S. Longuemart, S. Paoloni, H. Pfeiffer, J. Thoen, C. Glorieux, J. Appl. Phys. 97, 014701 (2005), doi: 10.1063/1.1821635
- [29] E. Garcia-Cuesta, A.J. de Castro, I.M. Galvan, F. Lopez, Appl. Spectrosc. 68, 900 (2014), doi: 10.1366/13-07185
- [30] G. Świrniak, G. Głomb, J. Mroczka, Appl. Opt. 53, 4239 (2014), doi: 10.1364/AO.53.004239
- [31] K. Skorupski, J. Mroczka, N. Riefler, H. Oltmann, S. Will, T. Wriedt, J. Quant. Spectrosc. Radiat. Transf. 119, 53 (2013), doi: 10.1016/j.jqsrt.2012.12.014
- [32] A. Hijazi, S. Sachidanandan, R. Singh, V. Madhavan, Meas. Sci. Technol. 22, 025106 (2011), doi: 10.1088/0957-0233/22/2/025106
- [33] T. Hieta, M. Merimaa, M. Vainio, J. Seppa, A. Lassila, Appl. Opt. 50, 5990 (2011), doi: 10.1364/AO.50.005990
- [34] G. Świrniak, G. Głomb, J. Mroczka, Appl. Opt. 53, 7103 (2014), doi: 10.1364/AO.53.007103
- [35] T. Girasole, J. LeToulouzan, J. Mroczka, D. Wysoczanski, Rev. Sci. Instrum. 68, 2805 (1997), doi: 10.1063/1.1148199
- [36] J. Mroczka, M. Woźniak, F. Onofri, Metrol. Measurem. Syst. 19, 459 (2012), doi: 10.2478/v10178-012-0039-2
- [37] J. Mroczka, Measurement 46, 2896 (2013), doi: 10.1016/j.measurement.2013.04.040
- [38] Z.Y. Ran, B.G. Hu, Neurocomputing 127, 88 (2014), doi: 10.1016/j.neucom.2013.08.039
- [39] X. Fan, M. Kang, E. Heuvelink, P. de Reffye, B. Hu, Ecolog. Model. 312, 363 (2015), doi: 10.1016/j.ecolmodel.2015.06.006
- [40] A. Cozad, N.V. Sahinidis, D.C. Miller, Comput. Chem. Eng. 73, 116 (2015), doi: 10.1016/j.compchemeng.2014.11.010
- [41] P. Czop, G. Kost, D. Sławik, G. Wszołek, J. Achiev. Mater. Manufact. Eng. 44, 179 (2011)
- [42] T. Girasole, G. Gouesbet, G. Grehan, J.N. LeToulouzan, J. Mroczka, K.F. Ren, D. Wysoczanski, Particle Particle Syst. Character. 14, 211 (1997)
- [43] P. Al Khoury, G. Chavent, F. Clements, P. Herve, Inverse Probl. Sci. Eng. 13, 219 (2005), doi: 10.1080/10682760412331323143
- [44] T. Ren, M.F. Modest, A. Fateev, S. Clausen, J. Quant. Spectrosc. Radiat. Transf. 151, 198 (2015), doi: 10.1016/j.jqsrt.2014.10.005
- [45] I.A. Kruglov, O.A. Mishulina, J. Comput. Syst. Sci. Int. 52, 503 (2013), doi: 10.1134/S1064230713040126
- [46] N.V. Queipo, R.T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, P.K. Tucker, Progr. Aerospace Sci. 41, 1 (2005), doi: 10.1016/j.paerosci.2005.02.001
- [47] J.A. Scales, R. Snieder, Geophysics 65, 1708 (2000), doi: 10.1190/geo2000-0001.1
- [48] R. Snieder, Inverse Probl. 14, 387 (1998), doi: 10.1016/j.paerosci.2005.02.001
- [49] G. Świrniak, J. Mroczka, J. Opt. Soc. Am. A Opt. Image Sci. Vision 33, 667 (2016), doi: 10.1364/JOSAA.33.000667
- [50] V. Cherkassky, V. Krasnopolsky, D.P. Solomatie, J. Valdes, Neural Networks 19, 113 (2006), doi: 10.1016/j.neunet.2006.01.001
- [51] V.M. Krasnopolsky, H. Schiller, Neural Networks 16, 321 (2003), doi: 10.1016/S0893-6080(03)00027-3
- [52] S. Cięszczyk, Proc. SPIE 9506, 950623 (2015), doi: 10.1117/12.2178835
- [53] L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashun, J. Tennyson, J. Quant. Spectrosc. Radiat. Transf. 111, 2139 (2010), doi: 10.1016/j.jqsrt.2010.05.001
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv131n607kz