Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 6 | 1439-1444

Article title

Nonlocal Timoshenko Beam for Vibrations of Magnetically Affected Inclined Single-Walled Carbon Nanotubes as Nanofluidic Conveyors

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
This work displays both longitudinal and transverse vibrations of magnetically affected inclined single-walled carbon nanotubes for conveying fluid flow. By employing an equivalent continuum structure on the basis of the nonlocal Timoshenko beam model as well as plug-like model for the nanofluidic flow inside the pore, the nonlocal governing equations are obtained accounting for nonlocality, frictionless nature of the inside wall, the Knudsen number, and full longitudinal and transverse interactions of the fluid flow with the single-walled carbon nanotubes. By implementing Galerkin-based assumed mode method, the equations of motion are discretized appropriately and then solved for the unknown dynamical deformation fields. The roles of nanofluidic flow velocity, small-scale parameter, inclination angle of single-walled carbon nanotube, and magnetic field strength on maximum values of longitudinal and transverse displacements are explained and discussed. The results show that the maximum dynamic deflection of the inclined nanotube would lessen by increase of the magnetic field strength. This fact is also more apparent for higher levels of fluid flow velocity. Additionally, variation of the longitudinal magnetic field has a trivial influence on the variation of longitudinal displacement. The predicted results reveal that application of the longitudinal magnetic field could be used as an efficient methodology to reduce the lateral vibrations of single-walled carbon nanotubes as nanofluidic conveyors.

Keywords

EN

Year

Volume

131

Issue

6

Pages

1439-1444

Physical description

Dates

published
2017-06
received
2015-07-06
(unknown)
2017-05-20

Contributors

author
  • Department of Civil Engineering, K.N. Toosi University of Technology, P.O. Box 15875-4416, Valiasr Ave., Tehran, Iran

References

  • [1] S. Joseph, N.R. Aluru, Nano Lett. 8, 452 (2008), doi: 10.1021/nl072385q
  • [2] M. Majumder, N. Chopra, R. Andrews, B.J. Hinds, Nature 438, 44 (2005), doi: 10.1038/438044a
  • [3] M. Whitby, L. Cagnon, M. Thanou, N. Quirke, Nano Lett. 8, 2632 (2008), doi: 10.1021/nl080705f
  • [4] J.A. Thomas, A.J. McGaughey, Nano Lett. 8, 2788 (2008), doi: 10.1021/nl8013617
  • [5] E. Camponeschi, R. Vance, M. Al-Haik, H. Garmestani, R. Tannenbaum, Carbon 45, 2037 (2007), doi: 10.1016/j.carbon.2007.05.024
  • [6] H. Garmestani, M. Al-Haik, K. Dahmen, R. Tannenbaum, D. Li, S.S. Sablin, M. Yousuff Hussaini, Adv. Mater. 15, 1918 (2003), doi: 10.1002/adma.200304932
  • [7] H. Wang, K. Dong, F. Men, Y.J. Yan, X. Wang, Appl. Math. Modell. 34, 878 (2010), doi: 10.1016/j.apm.2009.07.005
  • [8] T. Murmu, M.A. McCarthy, S. Adhikari, J. Sound Vib. 331, 5069 (2012), doi: 10.1016/j.jsv.2012.06.005
  • [9] K. Kiani, Acta Mech. 224, 3139 (2013), doi: 10.1007/s00707-013-0937-8
  • [10] T. Murmu, M.A. McCarthy, S. Adhikari, J. Appl. Phys. 111, 113511 (2012), doi: 10.1063/1.4720084
  • [11] K. Kiani, Int. J. Mech. Sci. 87, 179 (2014), doi: 10.1016/j.ijmecsci.2014.04.018
  • [12] K. Kiani, J. Phys. Chem. Solids 75, 15 (2014), doi: 10.1016/j.jpcs.2013.07.022
  • [13] K. Kiani, J. Vib. Control 22, 3736 (2016), doi: 10.1177/1077546314565684
  • [14] A.C. Eringen, Int. J. Eng. Sci. 5, 191 (1967), doi: 10.1016/0020-7225(67)90004-3
  • [15] A.C. Eringen, Int. J. Eng. Sci. 10, 1 (1972), doi: 10.1016/0020-7225(72)90070-5
  • [16] A.C. Eringen, D.G.B. Edelen, Int. J. Eng. Sci. 10, 233 (1972), doi: 10.1016/0020-7225(72)90039-0
  • [17] A.C. Eringen, Nonlocal continuum field theories. Springer Science & Business Media, 2002
  • [18] K. Kiani, Phys. E 43, 387 (2010), doi: 10.1016/j.physe.2010.08.022
  • [19] Q. Wang, V.K. Varadan, Smart Mater. Struct. 15, 659 (2006), doi: 10.1088/0964-1726/15/2/050
  • [20] K. Bouafia, A. Kaci, M.S.A. Houari, A. Benzair, A. Tounsi, Smart Struct. Sys. 19, 115 (2017), doi: 10.12989/sss.2017.19.2.115
  • [21] L.L. Ke, Y.S. Wang, J. Yang, S. Kitipornchai, Acta Mech. Sinica 30, 516 (2014), doi: 10.1007/s10409-014-0072-3
  • [22] I. Belkorissat, M.S.A. Houari, A. Tounsi, E.A. Adda Bedia, S.R. Mahmoud, Steel Compos. Struct., Int. J. 18, 1063 (2015), doi: 10.12989/scs.2015.18.4.1063
  • [23] F. Bounouara, K.H. Benrahou, I. Belkorissat, A. Tounsi, Steel Compos. Struct. 20, 227 (2016), doi: 10.12989/scs.2016.20.2.227
  • [24] Y.G. Hu, K.M. Liew, Q. Wang, X.Q. He, B.I. Yakobson, J. Mech. Phys. Solids 56, 3475 (2008), doi: 10.1016/j.jmps.2008.08.010
  • [25] K. Kiani, J. Sound Vib. 330, 4896 (2011), doi: 10.1016/j.jsv.2011.03.033
  • [26] A.G. Arani, M.A. Roudbari, Thin Solid Films 542, 232 (2013), doi: 10.1016/j.tsf.2013.06.025
  • [27] S. Pouresmaeeli, S.A. Fazelzadeh, E. Ghavanloo, Compos. Part B 43, 3384 (2012), doi: 10.1016/j.compositesb.2012.01.046
  • [28] L.L. Ke, Y.S. Wang, Z.D. Wang, Compos. Struct. 94, 2038 (2012), doi: 10.1016/j.compstruct.2012.01.023
  • [29] K. Kiani, Compos. Struct. 116, 254 (2014), doi: 10.1016/j.compstruct.2014.03.045
  • [30] P. Malekzadeh, M.R. Golbahar Haghighi, M. Shojaee, Thin-Walled Struct. 78, 48 (2014), doi: 10.1016/j.tws.2013.10.027
  • [31] H. Rouhi, R. Ansari, M. Darvizeh, Acta Mech. 227, 1767 (2016), doi: 10.1007/s00707-016-1595-4
  • [32] H.L. Lee, W.J. Chang, J. Appl. Phys. 103, 024302 (2008), doi: 10.1063/1.2822099
  • [33] H.L. Lee, W.J. Chang, Physica E 41, 529 (2009), doi: 10.1016/j.physe.2008.10.002
  • [34] T.P. Chang, Appl. Math. Modell. 36, 1964 (2012), doi: 10.1016/j.apm.2011.08.020
  • [35] L. Wang, Phys. E 41, 1835 (2009), doi: 10.1016/j.physe.2009.07.011
  • [36] A. Tounsi, H. Heireche, A. Benzair, I. Mechab, J. Phys. Condens. Matter 21, 448001 (2009), doi: 10.1088/0953-8984/21/44/448001
  • [37] K. Kiani, Appl. Math. Modell. 37, 1836 (2013), doi: 10.1016/j.apm.2012.04.027
  • [38] K. Kiani, Comput. Methods Appl. Mech. Eng. 276, 691 (2014), doi: 10.1016/j.cma.2014.03.008
  • [39] S.P. Timoshenko, Philos. Mag. 41, 744 (1921), doi: 10.1080/14786442108636264
  • [40] S.P. Timoshenko, Philos. Mag. 43, 125 (1922), doi: 10.1080/14786442208633855
  • [41] G.E. Karniadakis, A. Beskok, N.R. Aluru, Microflows and Nanoflows: Fundamentals and Simulation, Springer, Berlin 2005
  • [42] K. Kiani, A. Nikkhoo, B. Mehri, J. Sound Vib. 320, 632 (2009), doi: 10.1016/j.jsv.2008.08.010
  • [43] M.S.A. Houari, A. Tounsi, A. Bessaim, S.R. Mahmoud, Steel Compos. Struct 22, 257 (2016), doi: 10.12989/scs.2016.22.2.257
  • [44] A. Tounsi, M.S.A. Houari, A. Bessaim, Struct. Eng. Mech. Int. J. 60, 547 (2016), doi: 10.12989/sem.2016.60.4.547

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv131n604kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.