PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 6 | 1419-1425
Article title

Effect of Reactor Pressure on Electrical and Structural Properties of Diamond Films Grown by Hot-Filament CVD

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Polycrystalline diamond films with preferred (111) and (222) facets were fabricated inside hot filament chemical vapour deposition reactor on silicon wafers using a mixture of 1% methane in hydrogen at various reactor pressures ranging from 10 to 50 mbar. Regarding characterization of diamond films, internal texture, surface morphology, quality of diamond and electrical conductivity were investigated using X-ray diffraction, scanning electron microscopy, the Raman spectroscopy and four-point-probe van der Pauw techniques, respectively. Results of these studies demonstrate that polycrystalline diamond structure is grown in random orientation with (111) facet being dominant showing sharp grain boundaries. Moreover, growth rate was found to increase with pressure up to 20 mbar and then decreased for further rise in pressure. That is why grain density is high with relatively smaller grains at higher pressures caused by higher nucleation rates. In contrast, electrical resistivity decreased ≈3 orders of magnitude showing a minimum at 2.9×10⁶ Ω cm as pressure was increased in the reactor. Reactor pressure during film growth resulted in poor surface morphology, absence of sp³ bonds and low resistivity. Hence, decrease of resistivity makes diamond films desirable for many electrical applications in semiconducting/electronic devices.
Year
Volume
131
Issue
6
Pages
1419-1425
Physical description
Dates
published
2017-06
received
2014-03-11
(unknown)
2016-03-30
References
  • [1] R.F. Davis, Diamond Films and Coatings, Noyes Publications, Park Ringe (NJ) 1992
  • [2] K.E. Spear, J.P. Dismukes, Synthetic Diamond: Emerging CVD Science and Technology, Wiley, New York 1993
  • [3] Z.L. Wang, C. Lu, J.J. Li, C.Z. Gu, Appl. Surf. Sci. 255, 9522 (2009), doi: 10.1016/j.apsusc.2009.07.086
  • [4] M. Ullah, E. Ahmed, Current Appl. Phys. 12, 945 (2012), doi: 10.1016/j.cap.2011.12.015
  • [5] Y. Okumura, K. Kanayama, K.-I. Shogaki, Combust. Flame 157, 1052 (2010), doi: 10.1016/j.combustflame.2010.02.010
  • [6] M. Zhang, Y. Xia, L. Wang, B. Gu, Q. Su, Y. Lou, J. Cryst. Growth 274, 21 (2005), doi: 10.1016/j.jcrysgro.2004.09.092
  • [7] A.T. Collins, E.C. Lightowler, in: Properties of Diamond, Ed. J.E. Field, Academic Press, San Diego 1979
  • [8] N. Jiang, K. Nishimura, Y. Shintani, A. Hiraki, J. Cryst. Growth 255, 102 (2003), doi: 10.1016/S0022-0248(03)01248-X
  • [9] G.H. Chen, R.Q. Cai, X.M. Song, J.X. Deng, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 107, 233 (2004), doi: 10.1016/j.mseb.2003.11.020
  • [10] S.H. Seo, T.H. Lee, Y.D. Kim, C.K. Park, J.S. Park, Thin Solid Films 447, 212 (2004), doi: 10.1016/S0040-6090(03)01059-9
  • [11] H. Rau, F. Picht, J. Mater. Res. 7, 934 (1992), doi: 10.1557/JMR.1992.0934
  • [12] D.W. Kweon, J.Y. Lee, D. Kim, J. Appl. Phys. 69, 8329 (1991), doi: 10.1063/1.347445
  • [13] M.M. Larijani, A. Navinrooz, F. Le Normand, Thin Solid Films 501, 206 (2006), doi: 10.1016/j.tsf.2005.07.240
  • [14] S.F. Wang, Y.R. Wang, J.C. Pu, J.C. Sung, Thin Solid Films 498, 224 (2006), doi: 10.1016/j.tsf.2005.07.268
  • [15] T.D. Makris, R. Giorgi, N. Lisi, L. Pilloni, E. Salernitano, Diamond Relat. Mater. 14, 318 (2005), doi: 10.1016/j.diamond.2005.01.015
  • [16] S. Pecoraro, J.C. Arnault, J. Werckmann, Diamond Relat. Mater. 14, 137 (2005), doi: 10.1016/j.diamond.2004.09.015
  • [17] S.T. Lee, Y.W. Lam, Z. Lin, Y. Chen, Q. Chen, Phys. Rev. B 55, 15937 (1997), doi: 10.1103/PhysRevB.55.15937
  • [18] J. Kang, C. Xiao, Y. Xiong, Y. Wang, Q. Meng, Z. Lin, K.A. Feng, Diamond Relat. Mater. 9, 1691 (2000), doi: 10.1016/S0925-9635(00)00301-0
  • [19] Q. Yang, W. Chen, C. Xiao, R. Sammynaiken, A. Hirose, Carbon 43, 748 (2005), doi: 10.1016/j.carbon.2004.10.047
  • [20] L.S. Wang, C.H. Wang, C.W. Peng, C.Y. Lee, H.T. Chiu, Carbon 43, 2618 (2005), doi: 10.1016/j.carbon.2005.04.027
  • [21] J.A. Smith, M.A. Cook, S.R. Langford, S.A. Redman, M.N.R. Ashfold, Thin Solid Films 368, 169 (2000), doi: 10.1016/S0040-6090(00)00759-8
  • [22] T. Hao, H. Zhang, C. Shi, G. Han, Surf. Coat. Technol. 201, 801 (2006), doi: 10.1016/j.surfcoat.2005.12.037
  • [23] S. Schwarz, S.M. Rosiwal, M. Frank, D. Breidt, R.F. Singer, Diamond Relat. Mater. 11, 589 (2002), doi: 10.1016/S0925-9635(01)00702-6
  • [24] Y.A. Mankelevich, A.T. Rakhimov, N.V. Suetin, Diamond Relat. Mater. 5, 888 (1996), doi: 10.1016/0925-9635(95)00493-9
  • [25] D.G. Goodwin, J. Appl. Phys. 74, 6888 (1993), doi: 10.1063/1.355063
  • [26] J.C. Angus, E.A. Evans, in: The Physics of Diamond, Eds. A. Paoletti, A. Tucciarone, IOS Press, Amsterdam 1997, p. 31
  • [27] J. Filik, Spectro. Eur. 17, 10 (2005) http://chm.bris.ac.uk/pt/diamond/pdf/se17.pdf
  • [28] L.J. van der Pauw, Philips Res. Rep. 13, 1 (1958)
  • [29] S. Yang, Z. He, Q. Li, D. Zhu, J. Gong, Diamond Relat. Mater. 17, 2075 (2008), doi: 10.1016/j.diamond.2008.07.005
  • [30] X. Liang, L. Wang, H. Zhu, D. Yang, Surf. Coat. Technol. 202, 261 (2007), doi: 10.1016/j.surfcoat.2007.05.032
  • [31] K.L. Hanson, Acta Metall. 27, 515 (1979), doi: 10.1016/0001-6160(79)90003-8
  • [32] K.K. Hirakuri, T. Kobayashi, E. Nakamura, N. Mutsukura, G. Friedbacher, Y. Machi, Vacuum 63, 449 (2001), doi: 10.1016/S0042-207X(01)00365-7
  • [33] K.K. Hirakuri, M. Yoshii, G. Friedbacher, M. Grasserbauer, Diamond Relat. Mater. 6, 1031 (1997), doi: 10.1016/S0925-9635(96)00768-6
  • [34] S.M. Leeds, T.J. Davis, P.W. May, C.D.O. Pickard, M.N.R. Ashfold, Diamond Relat. Mater. 7, 233 (1998), doi: 10.1016/S0925-9635(97)00261-6
  • [35] F. Jia, Y. Bai, F. Qu, J. Zhao, C. Zhuang, X. Jiang, Vacuum 84, 930 (2010), doi: 10.1016/j.vacuum.2010.01.003
  • [36] A.K. Kulkarni, A. Shrotriya, P. Cheng, A. Rodrigo, R. Basyam, D.J. Keeble, Thin Solid Films 253, 141 (1994), doi: 10.1016/0040-6090(94)90309-3
  • [37] K. Chakrabarti, R. Chakrabarti, S. Chaudhuri, A.K. Pal, Diamond Relat. Mater. 7, 1227 (1998), doi: 10.1016/S0925-9635(98)00187-3
  • [38] M. Adamschik, R. Muller, P. Gluche, A. Fluter, W. Limmer, R. Sauer, E. Kohn, Diamond Relat. Mater. 10, 1670 (2001), doi: 10.1016/S0925-9635(01)00393-4
  • [39] R. Brunsteiner, R. Haubner, B. Lux, Diamond Relat. Mater. 2, 1263 (1993), doi: 10.1016/0925-9635(93)90006-N
  • [40] S.J. Harris, A.M. Weiner, J. Appl. Phys. 75, 5026 (1994), doi: 10.1063/1.355744
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv131n601kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.