Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 5 | 1413-1416
Article title

The Influence of Substrate on Size of Pd Nanoparticles in C-Pd Composites Obtained in the PVD and CVD Processes

Title variants
Languages of publication
This paper presents the results of research of C-Pd composite films obtained by the physical vapor deposition and chemical vapor deposition method. These films will be applied as hydrogen sensors. It has been examined whether the substrate has an impact on morphology and topologies of the C-Pd composite and whether the thermal conductivity of the substrate has an impact on the average size of the Pd nanoparticles. Substrates such as Al₂O₃, SiO₂, Si, and Mo were used, and in the physical vapor deposition process fullerene (C₆₀) and palladium acetate were deposited. Some of the samples were examined microscopically, while another part was modified in the chemical vapor deposition process in the presence of xylene. It was found that the average size of the Pd nanoparticles prepared in the physical vapor deposition process is independent of the substrate for all of the substrates used in the present experiment. During the chemical vapor deposition process an increase of the size of the Pd nanoparticles was observed - as expected. What is more, we noticed a weak relation between the size of the Pd nanoparticles and the type of substrate on which the C-Pd composite was deposited.
Physical description
  • [1] L. Peraldo Bicelli, Int. J. Hydrogen Energy 11, 555 (1986), doi: 10.1016/0360-3199(86)90121-7
  • [2] S. Okazaki, S. Johjima, Thin Solid Films 558, 411 (2014), doi: 10.1016/j.tsf.2014.02.080
  • [3] Z. Hua, M. Yuasa, T. Kida, N. Yamazoe, K. Shimanoe, Thin Solid Films 548, 677 (2013), doi: 10.1016/j.tsf.2013.04.088
  • [4] T. Graham, J. Chem. Soc. 20, 235 (1867), doi: 10.1039/JS8672000235
  • [5] G.P. Meisner, Q. Hu, Nanotechnology 20, 204023 (2009), doi: 10.1088/0957-4484/20/20/204023
  • [6] D. Jose, B.R. Jagirdar, Int. J. Hydrogen Energy 35, 6804 (2010), doi: 10.1016/j.ijhydene.2010.03.117
  • [7] M. Kozłowski, R. Diduszko, K. Olszewska, H. Wronka, E. Czerwosz, Vacuum 82, 956 (2008), doi: 10.1016/j.vacuum.2008.01.035
  • [8] E. Kowalska, E. Czerwosz, M. Kozłowski, W. Surga, J. Radomska, H. Wronka, J. Therm. Anal. Calorim. 101, 737 (2010), doi: 10.1007/s10973-010-0869-7
  • [9] E. Kowalska, E. Czerwosz, A. Kamińska, M. Kozłowsk, J. Therm. Anal. Calorim. 108, 1017 (2012), doi: 10.1007/s10973-011-1932-8
  • [10] K. Sobczak, P. Dluzewski, M.T. Klepka, B. Kurowska, E. Czerwosz, Int. J. Hydrogen Energy 37, 18556 (2012), doi: 10.1016/j.ijhydene.2012.09.073
  • [11] K. Sobczak, P. Dluzewski, B.S. Witkowski, J. Dabrowski, M. Kozłowski, E. Kowalska, E. Czerwosz, Solid State Phenom. 186, 177 (2012), doi: 10.4028/
  • [12] E. Kowalska, M. Kozłowski, A. Kamińska, J. Radomska, H. Wronka, E. Czerwosz, K. Sobczak, Proc. SPIE 8902, 89022C (2013), doi: 10.1117/12.2031037
  • [13] K. Sobczak, Int. J. Thermophys. 36, 795 (2015), doi: 10.1007/s10765-014-1817-8
  • [14] A. Kaminska, S. Krawczyk, E. Czerwosz, K. Sobczak, M. Kozłowsk, Sens. Actuat. A Phys. 196, 86 (2013), doi: 10.1016/j.sna.2013.04.006
  • [15] A. Kaminska, S. Krawczyk, M. Kozlowski, E. Czerwosz, K. Sobczak, Sensor Lett. 11, 500 (2013), doi: 10.1166/sl.2013.2915
  • [16] S. Krawczyk, A. Kaminska, M. Kozlowski, J. Radomska, E. Czerwosz, K. Sobczak, J. Phys. Conf. Ser. 564, 012004 (2014)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.