Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 5 | 1387-1389

Article title

Surface Characterization of 309 and 310 Steel after the Corrosion in Wood Biomass Ash

Content

Title variants

Languages of publication

EN

Abstracts

EN
The aim of this study was to investigate the influence of biomass ashes - specifically wood biomass ash - on the surface of austenitic stainless steel 309 and 310. The process was carried out for 1000 h at 650°C. The microstructure and chemical composition of corrosion products were examined by scanning electron microscopy with energy dispersive spectroscopy analysis. Phase analysis of corrosion product were done by X-ray diffraction and ash composition was investigated by X-ray fluorescence. It was observed that wood biomass ash caused the corrosion of the steel surface. On the surface of the steels exposed to wood biomass ash the layer of corrosion products was observed, mostly chromium, nickel and iron oxide. The thickness of mill scale formed during the process was in the range of h=15-30 μm.

Keywords

Contributors

author
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
author
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
author
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
author
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland

References

  • [1] A. Magdziarz, A.K. Dalai, J.A. Koziński, Fuel 176, 135 (2016), doi: 10.1016/j.fuel.2016.02.069
  • [2] A. Magdziarz, M. Wilk, M. Gajek, D. Nowak-Woźny, A. Kopia, I. Kalemba-Rec, J.A. Koziński, Energy 113, 85 (2016), doi: 10.1016/j.energy.2016.07.029
  • [3] A.A. Khan, W. de Jong, P.J. Jansens, H. Spliethoff, Fuel Process Technol. 90, 21 (2009), doi: 10.1016/j.fuproc.2008.07.012
  • [4] H. Haberl, T. Beringer, S.C. Bhattacharya, K.H. Erb, M. Hoogwijk, Curr. Opin. Environment. Sustainabil. 2, 394 (2010), doi: 10.1016/j.cosust.2010.10.007
  • [5] K. Srirangan, L. Akawi, M.Y. Murray, C.P. Chou, Appl. Energy 100, 172 (2012), doi: 10.1016/j.apenergy.2012.05.012
  • [6] S.G. Sahu, N. Chakraborty, P. Sarkar, Renew. Sustainable Energy Rev. 39, 575 (2014), doi: 10.1016/j.rser.2014.07.106
  • [7] P. Basu, Biomass Gasification, Pyrolysis and Torrefaction. Practical Design and Theory, 2nd ed., Elsevier, San Diego 2013
  • [8] J. Werther, in: 20th Int. Conf. on Fluidized Bed Combustion, Xi'an (China), Eds. Guangxi YueHai, Zhang Changsui, ZhaoZhongyang Luo, 2009, p. 27, doi: 10.1007/978-3-642-02682-9
  • [9] R. Saidur, E.A. Abdelaziz, A. Demirbas, M.S. Hossain, S. Mekhilef, Renew. Sustain. Energy Rev. 15, 2262 (2011), doi: 10.1016/j.rser.2011.02.015
  • [10] R.G. Fernandez, C.P. García, A.G. Lavín, J.L.B. de las Heras, Fuel Process. Technol. 103, 16 (2012), doi: 10.1016/j.fuproc.2011.12.032
  • [11] L. Wang, C.L. Weller, D.D. Jones, M.A. Hanna, Biomass Bioenergy 32, 573 (2008), doi: 10.1016/j.biombioe.2007.12.007
  • [12] Y. Lin, S. Tanaka, Appl. Microbiol. Biotechnol. 69, 627 (2006), doi: 10.1007/s00253-005-0229-x
  • [13] S.V. Vassilev, D. Baxter, L.K. Andersen, C.G. Vassileva, Fuel 89, 913 (2010), doi: 10.1016/j.fuel.2009.10.022
  • [14] S.V. Vassilev, D. Baxter, L.K. Andersen, C.G. Vassileva, T.J. Morgan, Fuel 94, 1 (2012), doi: 10.1016/j.fuel.2011.09.030
  • [15] M. Ohmam, A. Nordin, B.J. Skrifvars, R. Backman, M. Hupa, Energy Fuels 14, 169 (2000), doi: 10.1021/ef990107b
  • [16] C. Luan, C. You, D. Zhang, Energy 69, 562 (2014), doi: 10.1016/j.energy.2014.03.050
  • [17] B.M. Steenari, A. Lundberg, H. Pettersson, M. Wilewska-Bien, D. Andersson, Energy Fuels 23, 5655 (2009), doi: 10.1021/ef900471u
  • [18] R.A. Antunes, M.C.L. de Oliveira, Corros. Sci. 76, (2013), doi: 10.1016/j.corsci.2013.07.013
  • [19] S.A. David, J.A. Siefert, Z. Feng, Sci. Technol. Weld Joining 18, 631 (2013), doi: 10.1179/1362171813Y.0000000152
  • [20] J.A. Siefert, S.A. David, Sci. Technol. Weld Joining 19, 271 (2014), doi: 10.1179/1362171814Y.0000000197
  • [21] S.A. David, J.A. Siefert, J.N. DuPont, J.P. Shingledecker, Sci. Technol. Weld Joining 20, 532 (2015), doi: 10.1179/1362171815Y.0000000035
  • [22] A. Magdziarz, D. Nowak-Woźny, M. Gajek, M. Wilk, in: Renewable Energy, in press (2017), doi: 10.1016/j.renene.2017.05.057
  • [23] R. Wasilewski, J. Hrabak, Archiwum Gospodarki Odpadami i Ochrony Środowiska 17, 1 (2015), (in Polish)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv131n5b23kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.