Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 5 | 1361-1366
Article title

Electrical Properties of BaCeO₃-Based Electrolytes for use in Dual Protonic Ceramic-Solid Oxide Fuel Cells

Title variants
Languages of publication
Bulk samples consisting of BaCe_{0.85}Y_{0.15}O_{3-δ} (BCY15) and Ce_{0.85}Y_{0.15}O_{2-δ} (YDC15) compounds, mixed together in different ratios, were studied as potential electrolytes in dual protonic ceramic-solid oxide fuel cells and compared with non-composite BCY15 and YDC15. The microstructures of the sintered materials indicate that BCY15 exhibits the largest grains, whereas composites have greater visible porosity than the non-composite samples. From X-ray diffraction studies it follows that BCY15 and YDC15 consist mainly of one phase, whereas the composites are two-phase materials. Electrochemical impedance spectroscopy studies at different temperatures show that the composite materials are capable of conduction the order of 10¯³ S/cm at temperatures above 500°C in a hydrogen-containing atmosphere. Furthermore, activation energy values of the conductivity determined for the composites in air atmosphere are between those obtained for BCY15 (E_{a}=0.590±0.017 eV) and YDC15 (E_{a}=1.132±0.008 eV). From this it follows that both phases of the composites influence the electrical conductivity of the materials. In conclusion, BCY15 and the BCY15-YDC15 composites show promise for future use as electrolytes in dual protonic ceramic-solid oxide fuel cells.

Physical description
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • [1] J.M. Dixon, L.D. LaGrange, U. Merten, C.F. Miller, J.T. Porter II, J. Electrochem. Soc. 110, 276 (1963), doi: 10.1149/1.2425731
  • [2] D.W. Strickler, W.G. Carlson, J. Am. Ceram. Soc. 47, 122 (1964), doi: 10.1111/j.1151-2916.1964.tb14368.x
  • [3] H.L. Tuller, A.S. Nowick, J. Electrochem. Soc. 122, 255 (1975)0, doi: 10.1149/1.2134190
  • [4] H. Yahiro, Y. Eguchi, K. Eguchi, H. Arai, J. Appl. Electrochem. 18, 527 (1988), doi: 10.1007/BF01022246
  • [5] H. Yahiro, K. Eguchi, H. Arai, Solid State Ion. 36, 71 (1989), doi: 10.1016/0167-2738(89)90061-1
  • [6] W. Gao, N.M. Sammes, An Introduction to Electronic and Ionic Materials, World Sci. Publ., Singapore 1999, doi: 10.1142/9789810248550
  • [7] H.L. Tuller, A.S. Nowick, J. Phys. Chem. Solids 38, 859 (1977), doi: 10.1016/0022-3697(77)90124-X
  • [8] H.L. Tuller, A.S. Nowick, J. Electrochem. Soc. 126, 209 (1979), doi: 10.1149/1.2129007
  • [9] F.A. Kröger, H.J. Vink, in: Solid State Physics, Vol. 3, Eds. F. Seitz, D. Turnbull, Academic Press, Elsevier B.V., Cambridge (MA) 1956, p. 307, doi: 10.1016/S0081-1947(08)60135-6
  • [10] H. Iwahara, T. Esaka, H. Uchida, N. Maeda, Solid State Ion. 3-4, 359 (1981), doi: 10.1016/0167-2738(81)90113-2
  • [11] K.D. Kreuer, Chem. Mater. 8, 610 (1996), doi: 10.1021/cm950192a
  • [12] H. Iwahara, Solid State Ion. 86-88, 9 (1996), doi: 10.1016/0167-2738(96)00087-2
  • [13] T. Hibino, A. Hashimoto, M. Suzuki, M. Sano, J. Electrochem. Soc. 149, A1503 (2002), doi: 10.1149/1.1513983
  • [14] T. Shimura, H. Tanaka, H. Matsumoto, T. Yogo, Solid State Ion. 176, 2945 (2005), doi: 10.1016/j.ssi.2005.09.027
  • [15] W. Suksamai, I.S. Metcalfe, Solid State Ion. 178, 627 (2007), doi: 10.1016/j.ssi.2007.02.003
  • [16] N. Zakowsky, S. Williamson, J.T.S. Irvine, Solid State Ion. 176, 3019 (2005), doi: 10.1016/j.ssi.2005.09.040
  • [17] P. Sawant, S. Varma, B.N. Wani, S.R. Bharadwaj, Int. J. Hydrogen En. 37, 3848 (2012), doi: 10.1016/j.ijhydene.2011.04.106
  • [18] A.S. Thorel, A. Chesnaud, M. Viviani, A. Barbucci, S. Presto, P. Piccardo, Z. Ilhan, D. Vladikova, Z. Stoynov, ECS Trans. 25, 753 (2009), doi: 10.1149/1.3205592
  • [19] G. Caboche, J.-F. Hochepied, P. Piccardo, K. Przybylski, R. Ruckdäschel, M.-R. Ardigó, E. Fatome, S. Chevalier, A. Perron, L. Combemale, M. Palard, J. Prazuch, T. Brylewski, ECS Trans. 25, 763 (2009), doi: 10.1149/1.3205593
  • [20] G. Chiodelli, L. Malavasi, C. Tealdi, S. Barison, M. Battagliarin, L. Doubova, M. Fabrizio, C. Mortalň, R. Gerbasi, J. Alloy Comp. 470, 477 (2009), doi: 10.1016/j.jallcom.2008.03.011
  • [21] S. Presto, A. Barbucci, M. Viviani, Z. Ilhan, S.A. Ansar, D. Soysal, A. Thorel, J. Abreu, A. Chesnaud, T. Politova, K. Przybylski, J. Prazuch, T. Brylewski, Z. Zhao, D. Vladikova, Z. Stoynov, ECS Trans. 25, 773 (2009), doi: 10.1149/1.3205594
  • [22] Z.-X. Lin, Z.-K. Gun, C.-W. Sun, Rapid Ion Conductor - Foundation, Materials, Application, Shanghai Science Technology Press, Shanghai 1983, p. 46 (in Chinese)
  • [23] W.D. Kingery, J. Am. Ceram. Soc. 57, 1 (1974), doi: 10.1111/j.1151-2916.1974.tb11350.x
  • [24] W.D. Kingery, J. Am. Ceram. Soc. 57, 74 (1974), doi: 10.1111/j.1151-2916.1974.tb10818.x
  • [25] X. Guo, S. Kim, in: Annual Review of Nano Research, Vol. 2, Eds. G. Cao, C.J. Brinker, World Sci. Publ., Singapore 2008, p. 495, doi: 10.1142/9789812790248_0011
  • [26] M.C. Martin, M.L. Mecartney, Solid State Ion. 161, 67 (2003), doi: 10.1016/S0167-2738(03)00265-0
  • [27] M. Khandelwal, A. Venkatasubramanian, T.R.S. Prasanna, P. Gopalan, J. Eur. Ceram. Soc. 31, 559 (2011), doi: 10.1016/j.jeurceramsoc.2010.10.027
  • [28] J.E. Bauerle, J. Phys. Chem. Solids 30, 2657 (1969), doi: 10.1016/0022-3697(69)90039-0
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.