PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 5 | 1340-1343
Article title

Hot Compression Test of Heat Resistant Steel

Content
Title variants
Languages of publication
EN
Abstracts
EN
This article deals with the analysis of formability of heat resistant steel type 9Cr-1Mo by physical laboratory simulation - hot compression test. The 9Cr-1Mo steel belongs to modern 9%Cr tempered martensitic steel for high-temperature applications in advanced thermal power plants. The shape of the sample was defined based on numerical simulations. The laboratory simulation of forming process called physical simulation - specifically hot compression test was realized in the temperature range from 500 to 950°C and total deformation in the range from 39 to 52%. Cracks formed during hot compression test in the notches are assessed. Subsequently, the relation between the compression temperature, strain, and crack length was defined. The suitable workability corresponds to the temperature range 650-900°C, it agrees with results of numerical simulations. At a temperature of 900°C there is marginal relative deformation without rupture ε =39.9%, which corresponds to the value according to simulations NCL criteria 0.501.
Keywords
Contributors
  • Institute of Materials, Faculty of Metallurgy, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia
author
  • Institute of Materials, Faculty of Metallurgy, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia
author
  • Institute of Materials, Faculty of Metallurgy, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia
author
  • Institute of Materials, Faculty of Metallurgy, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia
author
  • Institute of Materials, Faculty of Metallurgy, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia
References
  • [1] J.C. Vaillant, B. Vandenberghe, B. Hahn, H. Heuser, C. Jochum, Int. J. Pres. Ves. Pip. 85, 38 (2008), doi: 10.1016/j.ijpvp.2007.06.011
  • [2] R. Shi, Z. Liu, J. Iron Steel. Res. Int. 18, 53 (2011), doi: 10.1016/S1006-706X(11)60090-3
  • [3] A. Zieliński, G. Golanski, M. Sroka, Kovove Mater. 54, 1 (2016), doi: 10.4149/km_2016_1_61
  • [4] P.J. Ennis, A. Zielinska-Lipiec, A. Czyrska-Filemonowicz, Mater. Sci. Tech. Ser. 16, 10 (2000)
  • [5] J. Blach, L. Falat, P. Švec, Eng. Fail. Anal. 16, 1397 (2009), doi: 10.1016/j.engfailanal.2008.09.003
  • [6] L. Falat, L. Čiripová, J. Kepič, J. Buršík, I. Podstranská, Eng. Fail. Anal. 40, 141 (2014), doi: 10.1016/j.engfailanal.2014.02.018
  • [7] L. Falat, A. Výrostková, M. Svoboda, O. Milkovič, Kovove Mater. 49, 417 (2011), doi: 10.4149/km-2011-6-417
  • [8] B.P.P.A. Gouveia, J.M.C. Rodrigues, P.A.F. Martins, Int. J. Mech. Sci. 38, 361(1996), doi: 10.1016/0020-7403(95)00069-0
  • [9] S.I. Oh, C.C. Chen, S. Kobayashi, J. Eng. Ind. - ASME 101, 36 (1979), doi: 10.1115/1.3439471
  • [10] T. Kvačkaj, R. Kočiško, J. Tiža, J. Bidulská, A. Kováčová, R. Bidulský, J. Bacsó, M. Vlado, Arch. Metall. 58, 407 (2013), doi: 10.2478/amm-2013-0008
  • [11] L. Tan, X. Ren, T.R. Allen, Corros. Sci. 52, 1520 (2010), doi: 10.1016/j.corsci.2009.12.032
  • [12] C.C. Huang, J.H. Cheng, Int. J. Mech. Sci. 45, 1123 (2005), doi: 10.1016/j.ijmecsci.2005.02.014
  • [13] A. Fedoriková, T. Kvačkaj, R. Kočiško, R. Bidulský, P. Petroušek, J. Bidulská, L. Domcová, Acta. Metall. Slov. 22, 102 (2016), doi: 10.12776/ams.v22i2.616
  • [14] P. Petroušek, T. Kvačkaj, R. Kočiško, R. Bidulský, J. Bidulská, A. Fedoriková, T. Hlava, Acta. Metall. Slov. 21, 176 (2015), doi: 10.12776/ ams.v21i3.615
  • [15] R. Kočiško, R. Bidulský, L. Dragošek, M. Škrobian, Acta Metall. Slov. 20, 302 (2014), doi: 10.12776/ams.v20i3.366
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv131n5b10kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.