Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 5 | 1324-1327

Article title

In Situ Electron Beam Amorphization of Sb₂Te₃ within Single Walled Carbon Nanotubes

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this study, we reveal the crystallography, crystallinity, and amorphization of low-dimensional crystals of the topological insulator and phase change material Sb₂Te₃ within both discrete and bundled single walled carbon nanotubes with a diameter range spanning 1.3-1.7 nm by a combination of electron diffraction, aberration-corrected high resolution imaging, and variable dose electron beam irradiation. We further reveal that electron diffraction indicates that the crystallinity of the host single walled carbon nanotubes is largely unaffected by this process indicating that mass loss during the observed in situ glass transition had not occurred and that the template had maintained its structural integrity. Such a transition would not be possible with any other common nanoporous template for which the pores would be enlarged due to likely sintering.

Keywords

Contributors

author
  • Department of Physics and School of Engineering, University of Warwick, Coventry, CV4 7AL UK
author
  • Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, PL-02668 Warsaw, Poland
author
  • Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, PL-02668 Warsaw, Poland
author
  • Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, PL-02668 Warsaw, Poland
author
  • Department of Physics and School of Engineering, University of Warwick, Coventry, CV4 7AL UK

References

  • [1] A. Sato, Y. Tsukamoto, Nature 363, 431 (1993), doi: 10.1038/363431a0
  • [2] H.J. Gao, K. Sohlberg, Z.Q. Xue, H.Y. Chen, S.M. Hou, L.P. Ma, X.W. Fang, S.J. Pang, S.J. Pennycook, Phys. Rev. Lett. 84, 1780 (2000), doi: 10.1103/PhysRevLett.84.1780
  • [3] K. Yano, T. Ikeda, Appl. Phys. Lett. 80, 1067 (2002)
  • [4] Y. Cho, Integr. Ferroelectr. 50, 189 (2002), doi: 10.1063/1.1447007
  • [5] H.J. Mamin, Appl. Phys. Lett. 69, 433 (1996), doi: 10.1063/1.116965
  • [6] E.B. Cooper, S.R. Manalis, H. Fang, H. Dai, K. Matsumoto, S.C. Minne, T. Hunt, C.F. Quate, Appl. Phys. Lett. 75, 3566 (1999), doi: 10.1063/1.125390
  • [7] M. Cavallini, F. Biscarini, S. Leo, F. Zerbetto, G. Bottari, D.A. Leigh, Science 299, 531 (2003), doi: 10.1126/science.1078012
  • [8] C.E. Giusca, V. Stolojan, J. Sloan, F. Börrnert, H. Shiozawa, K. Sader, M.H. Rümmeli, B. Büchner, S.R.P. Silva, Nano Lett. 13, 4020 (2013), doi: 10.1021/nl4010354
  • [9] R. Carter, M. Suyetin, S. Lister, M.A. Dyson, H. Trewhitt, S. Goel, Z. Liu, K. Suenaga, C. Giusca, R.J. Kashtiban, J.L. Hutchison, J.C. Dore, G.R. Bell, E. Bichoutskaia, J. Sloan, Dalton Trans. 43, 7391 (2014), doi: 10.1039/C4DT00185K
  • [10] A.V. Lukashin, N.S. Falaleev, N.I. Verbitskiy, A.A. Volykhov, I.I. Verbitskiy, L.V. Yashna, A.K. Kumsov, N.A. Kiselev, A.A. Eliseev, Nanosyst. Phys. Chem. Math. 6, 850 (2015), doi: 10.17586/2220-8054-2015-6-6-850-856
  • [11] H.D. Yan, P. Lemmens, H. Dierke, S.C. White, F. Ludwig, M. Schilling, J. Phys. Conf. Series 145, 012079 (2008), doi: 10.1088/1742-6596/145/1/012079
  • [12] P. Kumar, T. Hoffman, P. Huber, P. Scheib, P. Lemmens, J. Appl. Phys. 103, 024303 (2008), doi: 10.1063/1.2829813
  • [13] K.M. Liew, C.H. Wong, X.Q. He, M.J. Tan, Phys. Rev. B 71, 075424 (2005), doi: 10.1103/PhysRevB.71.075424
  • [14] A. Zobelli, A. Gloter, C.P. Ewels, G. Seifert, C. Colliex, Phys. Rev. B 75, 245402 (2007), doi: 10.1103/PhysRevB.75.245402
  • [15] M. Zhu, M. Xia, Z. Song, Y. Cheng, L. Wu, F. Rao, S. Song, M. Wang, Y. Lu, S. Feng, Nanoscale 7, 9935 (2015), doi: 10.1039/C4NR07408D
  • [16] M. Winkler, X. Liu, J.D. König, S. Buller, U. Schürmann, L. Kienle, W. Bensch, H. Böttner, J. Mater. Chem. 22, 11323 (2012), doi: 10.1039/C2JM30363A
  • [17] A.N. Mansour, W. Wong-Ng, Q. Huang, W. Tang, A. Thompson, J. Sharp, J. Appl. Phys. 116, 083513 (2014), doi: 10.1063/1.4892441
  • [18] J. Sloan, D.M. Wright, H.G. Woo, S. Bailey, G. Brown, A.P.E. York, K.S. Coleman, J.L. Hutchison, M.L.H. Green, Chem. Commun., 699 (1999), doi: 10.1039/A901572H
  • [19] J.-F. Colomer, L. Henrad, Ph. Lambin, G. Van Tendeloo, Phys. Rev. B 64, 125425 (2001), doi: 10.1103/PhysRevB.64.125425
  • [20] C. Bosch-Navarro, L.M. Perkins, R.J. Kashtiban, J.P. Rourke, I.J. Shannon, J. Sloan, ACS Nano 10, 796 (2016)
  • [21] J. Sloan, A.I. Kirkland, J.L. Hutchison, M.L.H. Green, Chem. Commun., 1319 (2002), doi: 10.1021/acsnano.5b05898
  • [22] K. N'Dri, V. Coulibaly, D. Houphouët-Boigny, J.C. Jumas, J. Ovon. Res. 9, 113 (20l3)
  • [23] A.A. Eliseev, N.S. Falaleev, N.I. Verbitskiy, A.A. Volykhov, L.V. Yashina, A. Kumskov, V.G. Zhigalina, A.L. Vasiliev, A.V. Lukashin, J. Sloan, N.A. Kiselev, Nano Lett. 17, 805 (2017), doi: 10.1021/acs.nanolett.6b04031
  • [24] R. Senga, H.-P. Komsa, Z. Liu, K. Hirose-Takai, A.V. Krasheninnikov, K. Suenaga, Nat. Mater. 13, 1050 (2014), doi: 10.1038/nmat4069
  • [25] A. Vasylenko, J. Wynn, P. Medeiros, A.J. Morris, J. Sloan, D. Quigley, Phys. Rev. B 95, 121408R (2017), doi: 10.1103/PhysRevB.95.121408
  • [26] P.V.C. Medeiros, S.R. Marks, J.M. Wynn, A. Vasylenko, Q. Ramasse, D. Quigley, J. Sloan, A.J. Morris, ACS Nano, (2017), doi: 10.1021/acsnano.7b02225

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv131n5b06kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.