Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
In this study, we reveal the crystallography, crystallinity, and amorphization of low-dimensional crystals of the topological insulator and phase change material Sb₂Te₃ within both discrete and bundled single walled carbon nanotubes with a diameter range spanning 1.3-1.7 nm by a combination of electron diffraction, aberration-corrected high resolution imaging, and variable dose electron beam irradiation. We further reveal that electron diffraction indicates that the crystallinity of the host single walled carbon nanotubes is largely unaffected by this process indicating that mass loss during the observed in situ glass transition had not occurred and that the template had maintained its structural integrity. Such a transition would not be possible with any other common nanoporous template for which the pores would be enlarged due to likely sintering.
Discipline
- 64.70.P-: Glass transitions of specific systems
- 62.23.Hj: Nanowires
- 61.80.Fe: Electron and positron radiation effects
- 61.72.Dd: Experimental determination of defects by diffraction and scattering
- 61.48.De: Structure of carbon nanotubes, boron nanotubes, and other related systems(for structure of hollow nanowires, see 61.46.Np)
- 61.82.Rx: Nanocrystalline materials
- 64.70.Nd: Structural transitions in nanoscale materials
Journal
Year
Volume
Issue
Pages
1324-1327
Physical description
Dates
published
2017-05
Contributors
author
- Department of Physics and School of Engineering, University of Warwick, Coventry, CV4 7AL UK
author
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, PL-02668 Warsaw, Poland
author
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, PL-02668 Warsaw, Poland
author
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, PL-02668 Warsaw, Poland
author
- Department of Physics and School of Engineering, University of Warwick, Coventry, CV4 7AL UK
References
- [1] A. Sato, Y. Tsukamoto, Nature 363, 431 (1993), doi: 10.1038/363431a0
- [2] H.J. Gao, K. Sohlberg, Z.Q. Xue, H.Y. Chen, S.M. Hou, L.P. Ma, X.W. Fang, S.J. Pang, S.J. Pennycook, Phys. Rev. Lett. 84, 1780 (2000), doi: 10.1103/PhysRevLett.84.1780
- [3] K. Yano, T. Ikeda, Appl. Phys. Lett. 80, 1067 (2002)
- [4] Y. Cho, Integr. Ferroelectr. 50, 189 (2002), doi: 10.1063/1.1447007
- [5] H.J. Mamin, Appl. Phys. Lett. 69, 433 (1996), doi: 10.1063/1.116965
- [6] E.B. Cooper, S.R. Manalis, H. Fang, H. Dai, K. Matsumoto, S.C. Minne, T. Hunt, C.F. Quate, Appl. Phys. Lett. 75, 3566 (1999), doi: 10.1063/1.125390
- [7] M. Cavallini, F. Biscarini, S. Leo, F. Zerbetto, G. Bottari, D.A. Leigh, Science 299, 531 (2003), doi: 10.1126/science.1078012
- [8] C.E. Giusca, V. Stolojan, J. Sloan, F. Börrnert, H. Shiozawa, K. Sader, M.H. Rümmeli, B. Büchner, S.R.P. Silva, Nano Lett. 13, 4020 (2013), doi: 10.1021/nl4010354
- [9] R. Carter, M. Suyetin, S. Lister, M.A. Dyson, H. Trewhitt, S. Goel, Z. Liu, K. Suenaga, C. Giusca, R.J. Kashtiban, J.L. Hutchison, J.C. Dore, G.R. Bell, E. Bichoutskaia, J. Sloan, Dalton Trans. 43, 7391 (2014), doi: 10.1039/C4DT00185K
- [10] A.V. Lukashin, N.S. Falaleev, N.I. Verbitskiy, A.A. Volykhov, I.I. Verbitskiy, L.V. Yashna, A.K. Kumsov, N.A. Kiselev, A.A. Eliseev, Nanosyst. Phys. Chem. Math. 6, 850 (2015), doi: 10.17586/2220-8054-2015-6-6-850-856
- [11] H.D. Yan, P. Lemmens, H. Dierke, S.C. White, F. Ludwig, M. Schilling, J. Phys. Conf. Series 145, 012079 (2008), doi: 10.1088/1742-6596/145/1/012079
- [12] P. Kumar, T. Hoffman, P. Huber, P. Scheib, P. Lemmens, J. Appl. Phys. 103, 024303 (2008), doi: 10.1063/1.2829813
- [13] K.M. Liew, C.H. Wong, X.Q. He, M.J. Tan, Phys. Rev. B 71, 075424 (2005), doi: 10.1103/PhysRevB.71.075424
- [14] A. Zobelli, A. Gloter, C.P. Ewels, G. Seifert, C. Colliex, Phys. Rev. B 75, 245402 (2007), doi: 10.1103/PhysRevB.75.245402
- [15] M. Zhu, M. Xia, Z. Song, Y. Cheng, L. Wu, F. Rao, S. Song, M. Wang, Y. Lu, S. Feng, Nanoscale 7, 9935 (2015), doi: 10.1039/C4NR07408D
- [16] M. Winkler, X. Liu, J.D. König, S. Buller, U. Schürmann, L. Kienle, W. Bensch, H. Böttner, J. Mater. Chem. 22, 11323 (2012), doi: 10.1039/C2JM30363A
- [17] A.N. Mansour, W. Wong-Ng, Q. Huang, W. Tang, A. Thompson, J. Sharp, J. Appl. Phys. 116, 083513 (2014), doi: 10.1063/1.4892441
- [18] J. Sloan, D.M. Wright, H.G. Woo, S. Bailey, G. Brown, A.P.E. York, K.S. Coleman, J.L. Hutchison, M.L.H. Green, Chem. Commun., 699 (1999), doi: 10.1039/A901572H
- [19] J.-F. Colomer, L. Henrad, Ph. Lambin, G. Van Tendeloo, Phys. Rev. B 64, 125425 (2001), doi: 10.1103/PhysRevB.64.125425
- [20] C. Bosch-Navarro, L.M. Perkins, R.J. Kashtiban, J.P. Rourke, I.J. Shannon, J. Sloan, ACS Nano 10, 796 (2016)
- [21] J. Sloan, A.I. Kirkland, J.L. Hutchison, M.L.H. Green, Chem. Commun., 1319 (2002), doi: 10.1021/acsnano.5b05898
- [22] K. N'Dri, V. Coulibaly, D. Houphouët-Boigny, J.C. Jumas, J. Ovon. Res. 9, 113 (20l3)
- [23] A.A. Eliseev, N.S. Falaleev, N.I. Verbitskiy, A.A. Volykhov, L.V. Yashina, A. Kumskov, V.G. Zhigalina, A.L. Vasiliev, A.V. Lukashin, J. Sloan, N.A. Kiselev, Nano Lett. 17, 805 (2017), doi: 10.1021/acs.nanolett.6b04031
- [24] R. Senga, H.-P. Komsa, Z. Liu, K. Hirose-Takai, A.V. Krasheninnikov, K. Suenaga, Nat. Mater. 13, 1050 (2014), doi: 10.1038/nmat4069
- [25] A. Vasylenko, J. Wynn, P. Medeiros, A.J. Morris, J. Sloan, D. Quigley, Phys. Rev. B 95, 121408R (2017), doi: 10.1103/PhysRevB.95.121408
- [26] P.V.C. Medeiros, S.R. Marks, J.M. Wynn, A. Vasylenko, Q. Ramasse, D. Quigley, J. Sloan, A.J. Morris, ACS Nano, (2017), doi: 10.1021/acsnano.7b02225
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv131n5b06kz