PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 5 | 1324-1327
Article title

In Situ Electron Beam Amorphization of Sb₂Te₃ within Single Walled Carbon Nanotubes

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this study, we reveal the crystallography, crystallinity, and amorphization of low-dimensional crystals of the topological insulator and phase change material Sb₂Te₃ within both discrete and bundled single walled carbon nanotubes with a diameter range spanning 1.3-1.7 nm by a combination of electron diffraction, aberration-corrected high resolution imaging, and variable dose electron beam irradiation. We further reveal that electron diffraction indicates that the crystallinity of the host single walled carbon nanotubes is largely unaffected by this process indicating that mass loss during the observed in situ glass transition had not occurred and that the template had maintained its structural integrity. Such a transition would not be possible with any other common nanoporous template for which the pores would be enlarged due to likely sintering.
Keywords
Contributors
author
  • Department of Physics and School of Engineering, University of Warwick, Coventry, CV4 7AL UK
author
  • Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, PL-02668 Warsaw, Poland
author
  • Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, PL-02668 Warsaw, Poland
author
  • Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, PL-02668 Warsaw, Poland
author
  • Department of Physics and School of Engineering, University of Warwick, Coventry, CV4 7AL UK
References
  • [1] A. Sato, Y. Tsukamoto, Nature 363, 431 (1993), doi: 10.1038/363431a0
  • [2] H.J. Gao, K. Sohlberg, Z.Q. Xue, H.Y. Chen, S.M. Hou, L.P. Ma, X.W. Fang, S.J. Pang, S.J. Pennycook, Phys. Rev. Lett. 84, 1780 (2000), doi: 10.1103/PhysRevLett.84.1780
  • [3] K. Yano, T. Ikeda, Appl. Phys. Lett. 80, 1067 (2002)
  • [4] Y. Cho, Integr. Ferroelectr. 50, 189 (2002), doi: 10.1063/1.1447007
  • [5] H.J. Mamin, Appl. Phys. Lett. 69, 433 (1996), doi: 10.1063/1.116965
  • [6] E.B. Cooper, S.R. Manalis, H. Fang, H. Dai, K. Matsumoto, S.C. Minne, T. Hunt, C.F. Quate, Appl. Phys. Lett. 75, 3566 (1999), doi: 10.1063/1.125390
  • [7] M. Cavallini, F. Biscarini, S. Leo, F. Zerbetto, G. Bottari, D.A. Leigh, Science 299, 531 (2003), doi: 10.1126/science.1078012
  • [8] C.E. Giusca, V. Stolojan, J. Sloan, F. Börrnert, H. Shiozawa, K. Sader, M.H. Rümmeli, B. Büchner, S.R.P. Silva, Nano Lett. 13, 4020 (2013), doi: 10.1021/nl4010354
  • [9] R. Carter, M. Suyetin, S. Lister, M.A. Dyson, H. Trewhitt, S. Goel, Z. Liu, K. Suenaga, C. Giusca, R.J. Kashtiban, J.L. Hutchison, J.C. Dore, G.R. Bell, E. Bichoutskaia, J. Sloan, Dalton Trans. 43, 7391 (2014), doi: 10.1039/C4DT00185K
  • [10] A.V. Lukashin, N.S. Falaleev, N.I. Verbitskiy, A.A. Volykhov, I.I. Verbitskiy, L.V. Yashna, A.K. Kumsov, N.A. Kiselev, A.A. Eliseev, Nanosyst. Phys. Chem. Math. 6, 850 (2015), doi: 10.17586/2220-8054-2015-6-6-850-856
  • [11] H.D. Yan, P. Lemmens, H. Dierke, S.C. White, F. Ludwig, M. Schilling, J. Phys. Conf. Series 145, 012079 (2008), doi: 10.1088/1742-6596/145/1/012079
  • [12] P. Kumar, T. Hoffman, P. Huber, P. Scheib, P. Lemmens, J. Appl. Phys. 103, 024303 (2008), doi: 10.1063/1.2829813
  • [13] K.M. Liew, C.H. Wong, X.Q. He, M.J. Tan, Phys. Rev. B 71, 075424 (2005), doi: 10.1103/PhysRevB.71.075424
  • [14] A. Zobelli, A. Gloter, C.P. Ewels, G. Seifert, C. Colliex, Phys. Rev. B 75, 245402 (2007), doi: 10.1103/PhysRevB.75.245402
  • [15] M. Zhu, M. Xia, Z. Song, Y. Cheng, L. Wu, F. Rao, S. Song, M. Wang, Y. Lu, S. Feng, Nanoscale 7, 9935 (2015), doi: 10.1039/C4NR07408D
  • [16] M. Winkler, X. Liu, J.D. König, S. Buller, U. Schürmann, L. Kienle, W. Bensch, H. Böttner, J. Mater. Chem. 22, 11323 (2012), doi: 10.1039/C2JM30363A
  • [17] A.N. Mansour, W. Wong-Ng, Q. Huang, W. Tang, A. Thompson, J. Sharp, J. Appl. Phys. 116, 083513 (2014), doi: 10.1063/1.4892441
  • [18] J. Sloan, D.M. Wright, H.G. Woo, S. Bailey, G. Brown, A.P.E. York, K.S. Coleman, J.L. Hutchison, M.L.H. Green, Chem. Commun., 699 (1999), doi: 10.1039/A901572H
  • [19] J.-F. Colomer, L. Henrad, Ph. Lambin, G. Van Tendeloo, Phys. Rev. B 64, 125425 (2001), doi: 10.1103/PhysRevB.64.125425
  • [20] C. Bosch-Navarro, L.M. Perkins, R.J. Kashtiban, J.P. Rourke, I.J. Shannon, J. Sloan, ACS Nano 10, 796 (2016)
  • [21] J. Sloan, A.I. Kirkland, J.L. Hutchison, M.L.H. Green, Chem. Commun., 1319 (2002), doi: 10.1021/acsnano.5b05898
  • [22] K. N'Dri, V. Coulibaly, D. Houphouët-Boigny, J.C. Jumas, J. Ovon. Res. 9, 113 (20l3)
  • [23] A.A. Eliseev, N.S. Falaleev, N.I. Verbitskiy, A.A. Volykhov, L.V. Yashina, A. Kumskov, V.G. Zhigalina, A.L. Vasiliev, A.V. Lukashin, J. Sloan, N.A. Kiselev, Nano Lett. 17, 805 (2017), doi: 10.1021/acs.nanolett.6b04031
  • [24] R. Senga, H.-P. Komsa, Z. Liu, K. Hirose-Takai, A.V. Krasheninnikov, K. Suenaga, Nat. Mater. 13, 1050 (2014), doi: 10.1038/nmat4069
  • [25] A. Vasylenko, J. Wynn, P. Medeiros, A.J. Morris, J. Sloan, D. Quigley, Phys. Rev. B 95, 121408R (2017), doi: 10.1103/PhysRevB.95.121408
  • [26] P.V.C. Medeiros, S.R. Marks, J.M. Wynn, A. Vasylenko, Q. Ramasse, D. Quigley, J. Sloan, A.J. Morris, ACS Nano, (2017), doi: 10.1021/acsnano.7b02225
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv131n5b06kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.