Journal
Article title
Title variants
Languages of publication
Abstracts
Two principal elements play a role in a wireless power beaming system: a high power radiation source as the transmitter and a rectifying antenna (rectenna) as an RF to DC converter at the receiving site. A millimeter wave power transmission is analyzed using transmission system and a W-band rectenna based on a low-barrier Schottky diode. A quasi-optical approach is presented here, using free-space Gaussian propagation and optical ABCD matrices for lenses. Experiments are made to estimate the optimal load resistance and power handling capability of a single rectifier. A low power W-band tunable solid-state source delivering 0.4 W CW power equipped by the focusing lenses is used to characterize the responsivity of the rectenna. A pulsed power gyrotron is used to identify the diode breakdown point. It was found that the RF-to-DC conversion efficiency corresponding to the optimal load of 200 Ω is about 20.5% while the maximum DC power converted by the diode with optimal load is about 15 mW before breakdown.
Discipline
- 84.40.-x: Radiowave and microwave (including millimeter wave) technology(for microwave, submillimeter wave, and radiowave receivers and detectors, see 07.57.Kp; for microwave and radiowave spectrometers, see 07.57.Pt; for radiowave propagation, see 41.20.Jb)
- 88.80.ht: Wireless power transmission
- 88.80.hp: Radio-frequency power transmission
- 42.25.Bs: Wave propagation, transmission and absorption[see also 41.20.Jb—in electromagnetism; for propagation in atmosphere, see 42.68.Ay; see also 52.40.Db Electromagnetic (nonlaser) radiation interactions with plasma and 52.38-r Laser-plasma interactions—in plasma physics]
Journal
Year
Volume
Issue
Pages
1280-1284
Physical description
Dates
published
2017-05
Contributors
author
- Ariel University, Ariel 40700, Israel
author
- Ariel University, Ariel 40700, Israel
author
- Ariel University, Ariel 40700, Israel
author
- Ariel University, Ariel 40700, Israel
author
- Ariel University, Ariel 40700, Israel
author
- Ariel University, Ariel 40700, Israel
author
- Ariel University, Ariel 40700, Israel
References
- [1] W.C. Brown, IEEE Trans. Microw. Theory MTT-32, 1230 (1984), doi: 10.1109/TMTT.1984.1132833
- [2] Y. Pinhasi, I.M. Yakover, A. Eichenbaum, A. Gover, IEEE Trans. Plasma Sci. 24, 1050 (1996), doi: 10.1109/27.533112
- [3] E. Danieli, A. Abramovich, Y. Pinhasi, IET Microwaves Antennas Propagat. 9, 1167 (2015), doi: 10.1049/iet-map.2015.0054
- [4] B. Kapilevich, V. Shashkin, B. Litvak, G. Yemini, A. Etinger, D. Hardon, Y. Pinhasi, IEEE Microwave Wireless Compon. Lett. 26, 637 (2016), doi: 10.1109/LMWC.2016.2585557
- [5] M. Hoefle, K. Haehnsen, I. Oprea, O. Cojocari, A. Penirschke, R. Jakoby, J. Infrared Milli Terahertz Waves 35, 891 (2014), doi: 10.1007/s10762-014-0090-z
- [6] H. Kogelnik, T. Li, Proc. IEEE 54, 1312 (1966), doi: 10.1109/PROC.1966.5119
- [7] A. Yariv, Quantum Electronics, Wiley, 3rd ed., 1989 http://fulviofrisone.com/attachments/article/486/Yariv%20A.%20-%20Quantum%20Electronics.pdf
- [8] M. Pinuela, P.D. Mitcheson, S. Lucyszyn, Proc. Power MEMS, 41 (2010) http://http://cap.ee.ic.ac.uk/ pdm97/powermems/2010/poster-pdfs/041_Pinuela_67.pdf
- [9] M. Pilossof, M. Einat, Rev. Sci. Instrum. 86, 016113 (2015), doi: 10.1063/1.4906507
- [10] M. Einat, M. Pilossof, R. Ben-Moshe, H. Hirshbein, D. Borodin, Phys. Rev. Lett. 109, 185101 (2012), doi: 10.1103/PhysRevLett.109.185101
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv131n520kz