Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 4 | 1156-1158
Article title

Mechanochemically Synthesized CuFeSe₂ Nanoparticles and Their Properties

Title variants
Languages of publication
The mechanochemical synthesis of nanocrystalline CuFeSe₂ particles prepared by high-energy milling in a planetary mill in an argon atmosphere from copper, iron, and selenium for 60 min is reported for the first time. The CuFeSe₂ nanoparticles crystallize in tetragonal structure with mean crystallite size of about 32±1 nm. High resolution transmission electron microscopy measurements confirmed the presence of agglomerates which are formed by small nanocrystalline domains (5-40 nm). The magnetic data revealed that paramagnetic CuFeSe₂ nanoparticles coexist with a small amount of ferromagnetic impurities at room temperature. The magnetic transition towards a weak ferromagnetic or ferrimagnetic behavior occurs in CuFeSe₂ at approximately 79 K. The band gap of the CuFeSe₂ particles is 0.95 eV which is wider than the band gap in bulk materials (0.16 eV), which could be in many aspects of application more beneficial.
Physical description
  • Institute of Geotechnics, SAS, Watsonova 45, 040 01 Košice, Slovakia
  • Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Košice, Slovakia
  • Institute of Material Science of Seville (CSIC-US), 410-92 Seville, Spain
  • Institute of Geotechnics, SAS, Watsonova 45, 040 01 Košice, Slovakia
  • Institute of Electronics and Photonics, Slovak University of Technology and International Laser Centre, 812 19 Bratislava, Slovakia
  • Institute of Geotechnics, SAS, Watsonova 45, 040 01 Košice, Slovakia
  • [1] E. Dutková, M.J. Sayagues, J. Briančin, A. Zorkovská, Z. Bujňáková, J. Kováč, J.J. Kováč, P. Baláž, J. Ficeriová, J. Mater. Sci. 51, 1978 (2016), doi: 10.1007/s10853-015-9507-x
  • [2] R. Klenk, J. Klaer, R. Scheer, M.C. Lux-Steiner, I. Luck, N. Meyer, U. Ruhle, Thin Solid Films 480, 509 (2005), doi: 10.1016/j.tsf.2004.11.042
  • [3] L. Kazmerski, K. Ramanathan, J. Phys. Chem. Solids 66, 1853 (2005), doi: 10.1016/j.jpcs.2005.10.171
  • [4] M.A. Green, K. Emery, D.L. King, S. Igari, W. Warta, Prog. Photovolt. 10, 355 (2002), doi: 10.1002/pip.453
  • [5] D.X. Liang, R.S. Ma, S.H. Jiao, G.S. Pang, S.H. Feng, Nanoscale 4, 6265 (2012), doi: 10.1039/C2NR31193C
  • [6] J.M. Delgado, G.D. Dedelgado, M. Quintero, J.C. Woolley, Mater. Res. Bull. 27, 367 (1992), doi: 10.1016/0025-5408(92)90066-9
  • [7] Q.Y. Lu, J.Q. Hu, K.B. Tang, B. Deng, Y.T. Qian, Y.Z. Li, J. Cryst. Growth 217, 271 (2000), doi: 10.1016/S0022-0248(00)00492-9
  • [8] Y.K. Hsu, Y.G. Lin, Y.C. Chen, Mater. Res. Bull. 46, 2117 (2011), doi: 10.1016/j.materresbull.2011.06.035
  • [9] W.L. Wang, J. Jiang, T. Ding, C.D. Wang, J. Zuo, Q. Yang, Acs Appl. Mater. Interf. 7, 2235 (2015), doi: 10.1021/am508844w
  • [10] P. Baláž, M. Achimovičová, M. Baláž, P. Billik, Z. Cherkezova-Zheleva, J.M. Criado, F. Delogu, E. Dutková, E. Gaffet, F.J. Gotor, R. Kumar, I. Mitov, T. Rojac, M. Senna, A. Streletskii, K. Wieczorek-Ciurowa, Chem. Soc. Rev. 42, 7571 (2013), doi: 10.1039/c3cs35468g
  • [11] J.C. Woolley, A.M. Lamarche, G. Lamarche, R.B. del Re, M. Quintero, F. Gonzalez Jimenez, I.P. Swainson, T.M. Holden, J. Magn. Magn. Mater. 164, 154 (1996), doi: 10.1016/S0304-8853(96)00365-4
  • [12] Y.H.A. Wang, N.Z. Bao, A. Gupta, Solid State Sci. 12, 387 (2010), doi: 10.1016/j.solidstatesciences.2009.11.019
  • [13] H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, M. Miyazaki, H. Maeda, Chem. Mater. 18, 3330 (2006), doi: 10.1021/cm0518022
  • [14] P.T. Landsberg, Recombination in Semiconductors, Cambridge University Press, Cambridge 1991, doi: 10.1017/CBO9780511470769
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.