Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 4 | 1132-1134
Article title

Superconductivity and Quantum Critical Behavior in Cr_{100-z}Os_z

Title variants
Languages of publication
The magnetic phase diagrams of Cr alloys with group-8 metals, such as Re and Ru, show interesting properties. These include quantum critical and superconducting behavior. In order to extend these investigations this paper reports on the physical properties and the magnetic phase diagram of the Cr_{100-z}Os_{z} system, investigated in a concentration range of 2 ≤ z ≤ 30.6. Structural analysis indicate that samples with z<22 have a bcc structure, while those with z>22 include a cubic A15-type structure. Transport and magnetic property measurements indicate that the antiferromagnetic phase disappears at z ≈ 14 and that samples with concentrations z ≥ 12.2 show superconducting behavior. The magnetic phase diagram of Cr_{100-z}Os_{z} is constructed from the Néel and superconducting transition temperatures obtained from various measurements. The commensurate spin-density-wave to paramagnetic phase line decreases sharply for z>4. Fitting parameters of a power law fit to the commensurate spin-density-wave to paramagnetic phase line indicate possible quantum critical behavior. Present results suggest that this phase line terminates in a superconducting dome near a magnetic quantum critical point, similar to that observed in certain heavy fermion systems, but not previously reported for other Cr alloys.
  • Physics Department, Science Faculty, University of Johannesburg, Auckland Park, Johannesburg, South Africa
  • Physics Department, Science Faculty, University of Johannesburg, Auckland Park, Johannesburg, South Africa
  • Physics Department, Science Faculty, University of Johannesburg, Auckland Park, Johannesburg, South Africa
  • [1] E. Fawcett, H.L. Alberts, V.Y. Galkin, D.R. Noakes, J.V. Yakhmi, Rev. Mod. Phys. 66, 25 (1994), doi: 10.1103/RevModPhys.66.25
  • [2] L. Reddy, H.L. Alberts, A.M. Strydom, A.R.E. Prinsloo, A.M. Venter, J. Appl. Phys. 103, 07C903 (2008), doi: 10.1063/1.2832676
  • [3] B.S. Jacobs, A.R.E. Prinsloo, C.J. Sheppard, A.M. Strydom, J. Appl. Phys. 113, 17E126 (2013), doi: 10.1063/1.4795313
  • [4] P.R. Fernando, A.R.E. Prinsloo, C.J. Sheppard, L. Lodya, in: Proc. 58th Conf. of the South African Institute of Physics, Eds. R. Botha, T. Jili, I. Basson, Zululand 2013, p. 25
  • [5] B.S. Jacobs, C.J. Sheppard, A.R.E. Prinsloo, L. Lodya, J. Appl. Phys. 115, 17E121 (2014), doi: 10.1063/1.4863169
  • [6] A. Yeh, Y-A. Soh, J. Brooke, G. Aeppli, T.F. Rosenbaum, S.M. Hayden, Nature 419, 459 (2002), doi: 10.1038/nature01044
  • [7] M. Lee, A. Husmann, T.F. Rosenbaum, G. Aeppli, Phys. Rev. Lett. 92, 187201 (2004), doi: 10.1103/PhysRevLett.92.187201
  • [8] R. Jaramillo, Y. Feng, J. Wang, T.F. Rosenbaum, Proc. Natl. Acad. Sci. USA 107, 09E116 (2010), doi: 10.1073/pnas.1005036107
  • [9] C.J. Sheppard, A.R.E. Prinsloo, H.L. Alberts, A.M. Strydom, J. Appl. Phys. 109, 07E104 (2011), doi: 10.1063/1.3536667
  • [10] R.D. Blaugher, R.E. Hein, J.E. Cox, R.M. Waterstrat, J. Low. Temp. Phys. 1, 539 (1969), doi: 10.1063/1.3536667
  • [11] M. Venkataraman, J.P. Neumann, Bull. Alloy Phase Diagr. 11, 8 (1990), doi: 10.1007/BF02841577
  • [12] E.C. van Reuth, Acta Crystallogr. B 24, 186 (1968), doi: 10.1107/S0567740868001937
  • [13] R. Flukiger, A. Paoli, J. Muller, Solid State Commun. 14, 443 (1974), doi: 10.1016/0038-1098(74)90964-8
  • [14] B.T. Matthias, T.H. Geballe, V.B. Compton, E. Corenzwit, G.W. Hull, Phys. Rev. 128, 588 (1962), doi: 10.1103/PhysRev.128.588
  • [15] H. Löhneysen, A. Rosch, V. Matthias, P. Wölfle, Rev. Mod. Phys. 79, 1015 (2007), doi: 10.1103/RevModPhys.79.1015
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.