Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 4 | 1120-1122
Article title

Mechanochemical Preparation and Magnetic Properties of Fe₃O₄/ZnS Nanocomposite

Title variants
Languages of publication
Powder nanocomposite of Fe₃O₄/ZnS was prepared by mechanochemical synthesis in a planetary ball mill. In this reaction natural magnetite mineral Fe₃O₄ was used, together with zinc acetate (CH₃COO)₂Zn·2H₂O and sodium sulfide Na₂S·9H₂O, as precursors for the zinc sulfide ZnS. X-ray diffraction revealed that the sample is composed of small nanocrystalline particles, containing Fe₃O₄ and ZnS. The non-milled magnetite showed distinctive Verwey transition at around 120 K, this becomes suppressed after milling, as a consequence of structural disorder and presence of defects. Moreover, the reduction of saturation magnetization from 91 A m²/kg to 69.2 A m²/kg was observed, as a consequence of the milling process. The magnetization of the Fe₃O₄/ZnS nanocomposite was the lowest (34.5 A m²/kg), due to the milling and to the decreased weight fraction of the ferrimagnetic component. Nevertheless, the Fe₃O₄/ZnS sample demonstrates ferrimagnetic behavior as well, and its structure is less perturbed by milling, the Verwey transition, although less impressive, but is preserved.
  • Institute of Geotechnics, SAS, Watsonova 45, 040 01 Košice, Slovakia
  • Institute of Geotechnics, SAS, Watsonova 45, 040 01 Košice, Slovakia
  • Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Košice, Slovakia
  • [1] H.J. Hu, Y.Q. Sheng, M.Z. Ye, Y. Qian, J.B. Tang, Y.Q. Shen, Polymer 88, 94 (2016), doi: 10.1016/j.polymer.2016.02.026
  • [2] L.M. de la Rosa-Romo, M.T. Oropeza-Guzmán, A. Olivas-Sarabia, G. Pina-Lius, Sens. Actuat. B Chem. 233, 459 (2016), doi: 10.1016/j.snb.2016.04.113
  • [3] X. Zhou, L.S. Chen, A.X. Wang, Y.F. Ma, H.L. Zhang, Y.M. Zhu, Coll. Surf. B Biointerf. 134, 431 (2015), doi: 10.1016/j.colsurfb.2015.07.030
  • [4] A. Roychowdhury, S.P. Pati, S. Kumar, D. Das, Powder Technol. 254, 583 (2014), doi: 10.1016/j.powtec.2014.01.076
  • [5] X.M. Li, M.M. Chen, W.Z. Yang, Z.M. Zhou, L.R. Liu, Q.Q. Zhang, Coll. Surf. B Biointerf. 92, 136 (2012), doi: 10.1016/j.colsurfb.2011.11.030
  • [6] G. Kandasamy, D. Maity, Int. J. Pharm. 496, 191 (2015), doi: 10.1016/j.ijpharm.2015.10.058
  • [7] B. Ahmed, S. Kumar, S. Kumar, A.K. Ojha, J. Alloys Comp. 679, 324 (2016), doi: 10.1016/j.jallcom.2016.03.295
  • [8] J. Sun, X. Zheng, H. He, X. Chen, B. Dong, R. Fei, J. Mol. Struct. 1114, 123 (2016), doi: 10.1016/j.molstruc.2016.02.068
  • [9] S. Jabri, G. Amiri, V. Sallet, A. Souissi, A. Meftah, P. Galtier, M. Oueslati, Physica B Condens. Matter 489, 93 (2016), doi: 10.1016/j.physb.2016.02.025
  • [10] B. Asenjo, A.M. Chaparro, M.T. Gutierrez, J. Herrero, J. Klaer, Sol. Energy Mater. Sol. Cells 92, 302 (2008), doi: 10.1016/j.solmat.2007.09.005
  • [11] R. Mendil, Z.B. Ayadi, K. Djessas, J. Alloys Comp. 678, 87 (2016), doi: 10.1016/j. jallcom.2016.03.171
  • [12] J. Beltran-Huarac, M.J.F. Guinel, B.R. Weiner, G. Morell, Mater. Lett. 98, 108 (2013), doi: 10.1016/j.matlet.2013.02.042
  • [13] L. Liu, L. Xiao, H.Y. Zhu, Chem. Phys. Lett. 539, 112 (2012), doi: 10.1016/j.cplett.2012.04.063
  • [14] E.J.W. Verwey, Nature 144, 327 (1939), doi: 10.1038/144327b0
  • [15] J. Lee, S.G. Kwon, J.-G. Park, T. Hyeon, Nano Lett. 15, 4337 (2015), doi: 10.1021/asc.nanolett.5b00331
  • [16] J.A. Duffy, J.W. Taylor, S.B. Dugdale, C. Shenton-Tayler, M.W. Buttchers, S.R. Giblin, M.J. Cooper, Y. Sakurai, M. Itou, Phys. Rev. B 81, 134424 (2010), doi: 10.1103/PhysRevB.81.134424
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.