Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 4 | 1111-1113

Article title

Effect of Stochastic Dynamics on the Nuclear Magnetic Resonance in a Field Gradient

Content

Title variants

Languages of publication

EN

Abstracts

EN
In the present contribution, the attenuation function S(t) for an ensemble of spins in a magnetic-field gradient is calculated through an accumulation of the phase shifts in the rotating frame resulting from the changes of the particle displacements. The found S(t) is applicable for any kind of the stochastic motion of spins, including their non-Markovian dynamics with memory. Depending on the considered system, both the classical expressions valid for normal diffusion at long times and new formulae for the short-time Brownian motion can be obtained. Our method is also applicable to the NMR pulse sequences based on the refocusing principle. This is demonstrated by describing the spin echo experiment developed by Hahn.

Keywords

Contributors

author
  • Department of Physics, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Park Komenského 2, 042 00 Košice, Slovakia
author
  • Department of Physics, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Park Komenského 2, 042 00 Košice, Slovakia
  • Laboratory of Radiation Biology, Joint Institute for Nuclear Research, 141980, Dubna, Russia

References

  • [1] P.T. Callaghan, Translational Dynamics and Magnetic Resonance: Principles of Pulsed Gradient Spin Echo NMR, Oxford University Press, Oxford 2014, doi: 10.1093/acprof:oso/9780199556984.001.0001
  • [2] R. Kimmich, N. Fatkullin, Adv. Polymer Sci. 170, 1 (2004), doi: 10.1007/b12766
  • [3] P.P. Zänker, J. Schmidt, J. Schmiedeskamp, R.H. Acosta, H.W. Spiess, Phys. Rev. Lett. 99, 263001 (2007), doi: 10.1103/PhysRevLett.99.263001
  • [4] N.N. Jarenwattananon, L.-S. Bouchard, Phys. Rev. Lett. 114, 197601 (2015), doi: 10.1103/PhysRevLett.114.197601
  • [5] J. Stepišnik, Physica B 198, 299 (1994), doi: 10.1016/0921-4526(94)90016-7
  • [6] J.M. Cooke, Yu.P. Kalmykov, W.T. Coffey, Ch.M. Kerskens, Phys. Rev. E 80, 061102 (2009), doi: 10.1103/PhysRevE.80.061102
  • [7] R. Kimmich, NMR - Tomography, Diffusometry, Relaxometry, Springer-Verlag, Berlin 1997, doi: 10.1007/978-3-642-60582-6
  • [8] P.P. Zänker, J. Schmidt, J. Schmiedeskamp, R.H. Acosta, H.W. Spiess, Chem. Phys. Lett. 481, 137 (2009), doi: 10.1016/j.cplett.2009.09.040
  • [9] S.F. Nørrelykke, H. Flyvberg, Phys. Rev. E 83, 041103 (2011), doi: 10.1103/PhysRevE.83.041103
  • [10] Th. Franosch, M. Grimm, M. Belushkin, F.M. Mor, G. Foffi, L. Forró, S. Jeney, Nature 478, 85 (2011), doi: 10.1038/nature10498
  • [11] P.T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy, Oxford University Press, New York 1991, doi: 10.1002/mrc.1260330417
  • [12] S. Kheifets, A. Simha, K. Melin, T. Li, M.G. Raizen, Science 343, 1493 (2014), doi: 10.1126/science.1248091
  • [13] E.L. Hahn, Phys. Rev. 80, 580 (1950), doi: 10.1103/PhysRev.80.580
  • [14] E.O. Stejskal, J.E. Tanner, J. Chem. Phys. 42, 288 (1965), doi: 10.1063/1.1695690
  • [15] J. Tóthová, G. Vasziová, L. Glod, V. Lisý, Eur. J. Phys. 32, 645 (2011), doi: 10.1088/0143-0807/32/3/002
  • [16] J. Kärger, H. Pfeifer, G. Vojta, Phys. Rev. A 37, 4514 (1988), doi: 10.1103/PhysRevA.37.4514

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv131n4164kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.