Journal
Article title
Title variants
Languages of publication
Abstracts
A new kind of magnetically separable composite consisting initially of magnetite and cerium carbonate nanograins was investigated using magnetic and Mössbauer methods at room and low temperatures. Various stages of calcination treatment in air resulted in a transformation of the cerium carbonate into cerium dioxide and magnetite into more complicated iron oxide compositions. The final CeO₂ nanograins on the surface of α-Fe₂O₃ were obtained after calcination at 973 K.
Discipline
- 76.80.+y: Mössbauer effect; other γ-ray spectroscopy(see also 33.45.+x Mössbauer spectra—in atomic and molecular physics; for biophysical applications, see 87.64.kx; for chemical analysis applications, see 82.80.Ej)
- 75.50.Tt: Fine-particle systems; nanocrystalline materials
- 75.60.Ej: Magnetization curves, hysteresis, Barkhausen and related effects(for hysteresis in ferroelectricity, see 77.80.Dj)
- 61.46.Df: Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots)
- 75.50.Bb: Fe and its alloys
- 75.30.Kz: Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.)(for ferroelectric phase transitions, see 77.80.B-; for superconductivity phase diagrams, see 74.25.Dw)
Journal
Year
Volume
Issue
Pages
1096-1098
Physical description
Dates
published
2017-04
Contributors
author
- Ceitec IPM, Institute of Physics of Materials, AS CR, Zizkova 22, 616 00 Brno, Czech Republic
author
- Institute of Physics of Materials, AS CR, Zizkova 22, 616 00 Brno, Czech Republic
author
- Department of Physics, VSB-Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
author
- Department of Physics, VSB-Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
author
- Faculty of the Environment, University of Jan Evangelista Purkyne, Kralova Vysina 7, 400 96 Usti nad Labem, Czech Republic
References
- [1] Y.Y. Xu, X.F. Rui, Y.Y. Fu, H. Zhang, Chem. Phys. Lett. 410, 36 (2005), doi: 10.1016/j.cplett.2005.04.090
- [2] S.J. Satyawati, R.P. Prajakta, S.N. Madhav, P.P. Bakare, J. Nanopart. Res. 8, 635 (2006), doi: 10.1007/s11051-005-9033-x
- [3] G.K. Pradhan, K.M. Parida, Int. J. Eng. Sci. Tech. 2, 53 (2010), doi: 10.4314/ijest.v2i8.63780
- [4] P. Janos, P. Kuran, V. Pilarova, J. Trogl, M. Stastny, O. Pelant, J. Henych, S. Bakardjieva, O. Zivotsky, M. Kormunda, K. Mazanec, Chem. Eng. J. 262, 747 (2015), doi: 10.1016/j.cej.2014.10.016
- [5] T. Zak, Y. Jiraskova, Surf. Interface Anal. 38, 710 (2006), doi: 10.1002/sia.2285
- [6] R.M. Cornell, U. Schwertmann, in: The Iron Oxides, Wiley-VCH, Weinheim 2003, p. 117, doi: 10.1002/3527602097.ch6
- [7] R. Zboril, M. Mashlan, K. Barcova, M. Vujtek, Hyperfine Interact. 139-140, 597 (2002), doi: 10.1023/A:1021226929237
- [8] R. Zboril, M. Mashlan, D. Petridis, Chem. Mater. 14, 969 (2002), doi: 10.1021/cm0111074
- [9] I. Dezsi, Cs. Fetzer, Á. Gombkötö, I. Szücs, J. Gubicza, T. Ungár, J. Appl. Phys. 103, 104312 (2008), doi: 10.1063/1.2937252
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv131n4159kz