Journal
Article title
Title variants
Languages of publication
Abstracts
In the paper the thermodynamics of a cubic cluster with 8 sites at quarter filling is characterized by means of exact diagonalization technique. Particular emphasis is put on the behaviour of such response functions as specific heat and magnetic susceptibility. The system is modelled with extended Hubbard model which includes electron hopping between both first and second nearest neighbours as well as Coulombic interactions, both on-site and between nearest-neighbour sites. The importance of hopping between second nearest neighbours and Coulombic interactions between nearest neighbours for the temperature dependences of thermodynamic response functions is analysed. In particular, the predictions of the Schottky model are compared with the calculations based on the full energy spectrum.
Discipline
- 75.75.-c: Magnetic properties of nanostructures
- 05.70.Ce: Thermodynamic functions and equations of state(see also 51.30.+i Thermodynamic properties, equations of state in physics of gases; for equations of state of specific substances, see 64.30.-t; for equations of state of nuclear matter, and of neutron-star matter, see 21.65.Mn and 26.60.Kp, respectively; see also 95.30.Tg in astronomy; for thermodynamic properties of superconductors, see 74.25.Bt)
- 71.27.+a: Strongly correlated electron systems; heavy fermions
- 75.40.Cx: Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.)
- 65.80.-g: Thermal properties of small particles, nanocrystals, nanotubes, and other related systems
- 75.10.Lp: Band and itinerant models
Journal
Year
Volume
Issue
Pages
1012-1014
Physical description
Dates
published
2017-04
Contributors
author
- Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Łódź, Pomorska 149/153, PL-90236 Łódź, Poland
author
- Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Łódź, Pomorska 149/153, PL-90236 Łódź, Poland
author
- Department of Theoretical Physics and Astrophysics, Faculty of Sciences, P.J. Šafárik University, Park Angelinum 9, 041 54 Košice, Slovakia
author
- Department of Theoretical Physics and Astrophysics, Faculty of Sciences, P.J. Šafárik University, Park Angelinum 9, 041 54 Košice, Slovakia
author
- Department of Theoretical Physics and Astrophysics, Faculty of Sciences, P.J. Šafárik University, Park Angelinum 9, 041 54 Košice, Slovakia
References
- [1] D. Duffy, A. Moreo, Phys. Rev. B 55, 12918 (1997), doi: 10.1103/PhysRevB.55.12918
- [2] C. Noce, M. Cuoco, A. Romano, Physica C 282-287, 1705 (1997), doi: 10.1016/S0921-4534(97)00972-6
- [3] F. Becca, A. Parola, S. Sorella, Phys. Rev. B 61, R16287 (2000), doi: 10.1103/PhysRevB.61.R16287
- [4] T. Paiva, C. Huscroft, A.K. McMahan, R.T. Scalettar, J. Magn. Magn. Mater. 226-230, 224 (2001), doi: 10.1016/S0304-8853(00)00911-2
- [5] T. Paiva, R.T. Scalettar, C. Huscroft, A.K. McMahan, Phys. Rev. B 63, 125116 (2001), doi: 10.1103/PhysRevB.63.125116
- [6] S. Harir, M. Bennai, Y. Boughaleb, Phys. Scr. 78, 025701 (2008), doi: 10.1007/s12648-012-0076-4
- [7] F. López-Urías, G.M. Pastor, Eur. Phys. J. D 52, 159 (2009), doi: 10.1140/epjd/e2009-00009-9
- [8] S. Nath, N.K. Ghosh, Indian J. Phys. 56, 351 (2012), doi: 10.1007/s12648-012-0076-4
- [9] S. Nath, N.K. Ghosh, J. Supercond. Nov. Magn. 27, 1347 (2014), doi: 10.1007/s10948-013-2467-y
- [10] K. Szałowski, T. Balcerzak, M. Jaščur, A. Bobák, M. Žukovič, Bull. Soc. Sci. Lett. Lodz, Rech. déform. 66, 17 (2016), e-print arXiv: 1511.08490v3 http://arXiv.org/abs/
- [11] R. Schumann, Ann. Phys. 11, 49 (2002), doi: 10.1002/1521-3889(200201)11:1<49::AID-ANDP49>3.0.CO;2-7
- [12] R. Schumann, Physica C 460-462, 1015 (2007), doi: 10.1016/j.physc.2007.03.203
- [13] R. Schumann, Ann. Phys. 17, 221 (2008), doi: 10.1002/andp.200710281
- [14] R. Schumann, D. Zwicker, Ann. Phys. 522, 419 (2010), doi: 10.1002/andp.201010452
- [15] T.X.R. Souza, C.A. Macedo, PLoS ONE 11, e0161549 (2016), doi: 10.1371/journal.pone.0161549
- [16] Wolfram Research, Inc., Mathematica, Version 8.0.4, Champaign, IL (2010)
- [17] K. Karl'ová, J. Strečka, T. Madaras, Physica B 488, 49 (2016), doi: 10.1016/j.physb.2016.01.033
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv131n4131kz