PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 4 | 1012-1014
Article title

Exact Diagonalization Study of an Extended Hubbard Model for a Cubic Cluster at Quarter Filling

Content
Title variants
Languages of publication
EN
Abstracts
EN
In the paper the thermodynamics of a cubic cluster with 8 sites at quarter filling is characterized by means of exact diagonalization technique. Particular emphasis is put on the behaviour of such response functions as specific heat and magnetic susceptibility. The system is modelled with extended Hubbard model which includes electron hopping between both first and second nearest neighbours as well as Coulombic interactions, both on-site and between nearest-neighbour sites. The importance of hopping between second nearest neighbours and Coulombic interactions between nearest neighbours for the temperature dependences of thermodynamic response functions is analysed. In particular, the predictions of the Schottky model are compared with the calculations based on the full energy spectrum.
Keywords
Contributors
author
  • Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Łódź, Pomorska 149/153, PL-90236 Łódź, Poland
author
  • Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Łódź, Pomorska 149/153, PL-90236 Łódź, Poland
author
  • Department of Theoretical Physics and Astrophysics, Faculty of Sciences, P.J. Šafárik University, Park Angelinum 9, 041 54 Košice, Slovakia
author
  • Department of Theoretical Physics and Astrophysics, Faculty of Sciences, P.J. Šafárik University, Park Angelinum 9, 041 54 Košice, Slovakia
author
  • Department of Theoretical Physics and Astrophysics, Faculty of Sciences, P.J. Šafárik University, Park Angelinum 9, 041 54 Košice, Slovakia
References
  • [1] D. Duffy, A. Moreo, Phys. Rev. B 55, 12918 (1997), doi: 10.1103/PhysRevB.55.12918
  • [2] C. Noce, M. Cuoco, A. Romano, Physica C 282-287, 1705 (1997), doi: 10.1016/S0921-4534(97)00972-6
  • [3] F. Becca, A. Parola, S. Sorella, Phys. Rev. B 61, R16287 (2000), doi: 10.1103/PhysRevB.61.R16287
  • [4] T. Paiva, C. Huscroft, A.K. McMahan, R.T. Scalettar, J. Magn. Magn. Mater. 226-230, 224 (2001), doi: 10.1016/S0304-8853(00)00911-2
  • [5] T. Paiva, R.T. Scalettar, C. Huscroft, A.K. McMahan, Phys. Rev. B 63, 125116 (2001), doi: 10.1103/PhysRevB.63.125116
  • [6] S. Harir, M. Bennai, Y. Boughaleb, Phys. Scr. 78, 025701 (2008), doi: 10.1007/s12648-012-0076-4
  • [7] F. López-Urías, G.M. Pastor, Eur. Phys. J. D 52, 159 (2009), doi: 10.1140/epjd/e2009-00009-9
  • [8] S. Nath, N.K. Ghosh, Indian J. Phys. 56, 351 (2012), doi: 10.1007/s12648-012-0076-4
  • [9] S. Nath, N.K. Ghosh, J. Supercond. Nov. Magn. 27, 1347 (2014), doi: 10.1007/s10948-013-2467-y
  • [10] K. Szałowski, T. Balcerzak, M. Jaščur, A. Bobák, M. Žukovič, Bull. Soc. Sci. Lett. Lodz, Rech. déform. 66, 17 (2016), e-print arXiv: 1511.08490v3 http://arXiv.org/abs/
  • [11] R. Schumann, Ann. Phys. 11, 49 (2002), doi: 10.1002/1521-3889(200201)11:1<49::AID-ANDP49>3.0.CO;2-7
  • [12] R. Schumann, Physica C 460-462, 1015 (2007), doi: 10.1016/j.physc.2007.03.203
  • [13] R. Schumann, Ann. Phys. 17, 221 (2008), doi: 10.1002/andp.200710281
  • [14] R. Schumann, D. Zwicker, Ann. Phys. 522, 419 (2010), doi: 10.1002/andp.201010452
  • [15] T.X.R. Souza, C.A. Macedo, PLoS ONE 11, e0161549 (2016), doi: 10.1371/journal.pone.0161549
  • [16] Wolfram Research, Inc., Mathematica, Version 8.0.4, Champaign, IL (2010)
  • [17] K. Karl'ová, J. Strečka, T. Madaras, Physica B 488, 49 (2016), doi: 10.1016/j.physb.2016.01.033
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv131n4131kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.