EN
We have studied the influence of hydrostatic pressure on the electrical resistivity of carbon-doped semimetal EuB₆ which orders ferromagnetically at T_{C}=3.9 K and is intrinsically inhomogeneous due to fluctuations of carbon content. We observed a shift of the low-temperature resistivity maximum from 4.6 K (at 1 bar) to 5.2 K (at 30.3 kbar) with increasing pressure. However, the maximum of the derivative dρ/dT(T), which reveals the temperature of ferromagnetic ordering, does not change its position with increasing pressure. This behaviour is different from stoichiometric EuB₆, where pressure increases the ferromagnetic ordering temperature. The origin of this discrepancy may lie in the increase of volume fraction of the non-ferromagnetic phase with increase of pressure. Additional magnetoresistance measurements at various pressures between 1.5 K and 30 K have shown that with increase of magnetic field the resistivity is monotonically decreasing, and above 1 T a transition to a monotonic resistivity behaviour (dρ/dT(T)>0) is observed. Our results support the picture that carbon-rich regions play a role of "spacers", which prevent the percolation of the ferromagnetic phase.