Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 4 | 937-939
Article title

Analysis of Thermal Field in Mineral Transformer Oil Based Magnetic Fluids

Title variants
Languages of publication
Growing interest in the use of magnetic fluids in power systems especially in transformers as insulation and a coolant is nowadays registered. Magnetisable nanofluids, which are used in cooling systems as an alternative to mineral transformer oil, are characterized by lower concentration of magnetic nanoparticles. The magnetic fluid has better heat transfer and dielectric properties such as breakdown than mineral transformer oil and it can be used to improve heat flow, thereby increasing the ability of the active parts to resist failures such as electromagnetic pulses. External magnetic field may be used for forced circulation of magnetic fluid. Magnetic force inside the magnetic fluid can be adequately controlled by adjusting the incident magnetic field. This paper presents thermal distribution, fluid flow and cooling ability of mineral transformer oil and magnetic fluid based on mineral transformer oil. The concentration of Fe₃O₄ magnetic nanoparticles is 0.15% volume of mineral transformer oil. The thermal field is generated by a steel conductor. Thermal distributions in mineral transformer oil and magnetic fluid are investigated and differences for both cases are discussed in the paper.
Physical description
  • [1] R.-Q. Lv, Y. Zhao, H. Li, H.-F. Hu, IEEE Trans. Magn. 51, 1 (2015), doi: 10.1109/TMAG.2015.2394747
  • [2] G. Thirupathi R. Singh, IEEE Trans. Magn. 51, 1 (2015), doi: 10.1109/TMAG.2015.2437849
  • [3] L. Pislaru-Danescu, A.M. Morega, M. Morega, V. Stoica, O.M. Marinica, F. Nouras, N. Paduraru, I. Borbath, T. Borbath, IEEE Trans. Ind. Appl. 49, 1289 (2013), doi: 10.1109/TIA.2013.2252872
  • [4] S. Chaudhari, S. Patil, R. Zambare, S. Chakraborty, 2012 IEEE 10th Int. Conf. on the Properties and Applications of Dielectric Materials (ICPADM), IEEE, 2012, p. 1, doi: 10.1109/ICPADM.2012.6318921
  • [5] J.G. Hwang, M. Zahn, F.M. O'Sullivan, L.A. Pettersson, O. Hjortstam, R. Liu, J. Appl. Phys. 107, 14310 (2010), doi: 10.1109/CEIDP.2008.4772777
  • [6] T. Völker, E. Blums, S. Odenbach, GAMM-Mitt. 30, 185 (2007), doi: 10.1002/gamm.200790007
  • [7] A.M. Morega, M. Morega, L. Pîslaru-Dănescu, V. Stoica, F. Nouraş, F.D. Stoian, in: 2010 12th Int. Conf. on Optimization of Electrical and Electronic Equipment (OPTIM), 5510425, IEEE, Brašov 2010, p. 140, doi: 10.1109/OPTIM.2010.5510425
  • [8] M. Rajnak, J. Kurimsky, B. Dolnik, K. Marton, L. Tomco, A. Taculescu, L. Vekas, J. Kovac, I. Vavra, J. Tothova, P. Kopcansky, M. Timko, J. Appl. Phys. 114, 034313 (2013), doi: 10.1063/1.4816012
  • [9] M. Yang, R. O'Handley, Z. Fang, Proc. COMSOL Conf. 2010, Boston 2010, p. 1
  • [10] W. Cherief, M. Wu, Y. Avenas, S. Ferrouillat, L. Jossic, A. Lebouc, J. Berard, M. Petit, in: 2014 20th Int. Workshop on Thermal Investigations of ICs and Systems (THERMINIC), 6972499, IEEE, London 2014, doi: 10.1109/THERMINIC.2014.6972499
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.