PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 4 | 934-936
Article title

Low Magnetic Field Response in Ferronematics

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this work the 4-n-hexyl-4'-cyanobiphenyl liquid crystal was doped with differently shaped magnetite nanoparticles. The structural changes were observed by capacitance measurements. Influence of the shape of magnetic particles on magnetic Fréedericksz transition depends on the type of anchoring, which is characterized by the density of the anchoring energy and by the initial orientation between the liquid crystal molecules and the magnetic moment of the magnetic particles. It was observed that in the case of doping with spherical particles, the critical magnetic field is shifted to higher values with increase of volume concentration of the magnetic nanoparticles but decreases with increase of biasing voltage. In the case of doping with rod-like particles, the critical magnetic field is almost independent of the volume concentration of the magnetic nanoparticles.
Keywords
EN
Contributors
author
  • Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Košice, Slovakia
  • Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Košice, Slovakia
  • Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Košice, Slovakia
author
  • Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest, Hungary
  • Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest, Hungary
author
  • Université de Saint Etienne, Saint Etienne, France
author
  • Université de Saint Etienne, Saint Etienne, France
author
  • Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
  • Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Košice, Slovakia
References
  • [1] J.P.F. Lagerwall, G. Scalia, Curr. Appl. Phys. 12, 1387 (2012), doi: 10.1016/j.cap.2012.03.019
  • [2] V. Freedericksz, V. Zolina, Trans. Faraday Soc. 29, 919 (1970), doi: 10.1039/TF9332900919
  • [3] P.G. de Gennes, The Physics of Liquid Crystals, Clarendon Press, Oxford 1974
  • [4] F. Brochard, P.G. de Gennes, J. Phys. (France) 31, 691 (1970), doi: 10.1051/jphys:01970003107069100
  • [5] S.V. Burylov, Y.L. Raikher, Phys. Lett. A 149, 279 (1990), doi: 10.1016/0375-9601(90)90429-R
  • [6] S.V. Burylov, Y.L. Raikher, Mol. Cryst. Liq. Cryst. 258, 123 (1995), doi: 10.1080/10587259508034553
  • [7] J. Czub, S. Urban, A. Wurflinger, Liq. Cryst. 33, 85 (2006)
  • [8] P. Kopčanský, N. Tomašovičová, M. Koneracká, V. Závišová, M. Timko, A. Džarová, A. Šprincová, N. Éber, K. Fodor-Csorba, T. Tóth-Katona, A. Vajda, J. Jadzyn, Phys. Rev. E 78, 011702 (2008), doi: 10.1103/PhysRevE.78.011702
  • [9] N. Tomašovičová, P. Kopčanský, N. Éber, in: Anisotropy Research: New Developments, Ed. H.G. Lemu, Hauppauge, Nova Science, New York 2012, Ch. 11, p. 245
  • [10] V. Gdovinová, N. Tomašovičová, N. Éber, T. Tóth-Katona, V. Závišová, M. Timko, P. Kopčanský, Liq. Cryst. 41, 1773 (2014), doi: 10.1080/02678292.2014.950615
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv131n4105kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.