Title variants
Languages of publication
Abstracts
Basing our considerations on magnetic equation of state applied to the description of magnetic systems of confined geometry we developed the model of calculations of the electrical resistivity for metallic multilayers. It was shown that in the transport of charge in ferromagnetic material d-electrons play an important role. The key parameters in the presented model are: the width of the electron energy band and the shift of the energy level for two spin orientations as well as the Fermi energy and size of the sample (the thickness of magnetic and nonmagnetic layers and the total number of layers). The presented results of calculations for temperature dependence of magnetoresistance are in qualitative agreement with the available experimental data. The model calculations introduced in this paper can be applied to current-in-plane geometry as well as to current-perpendicular-to-plane geometry. The calculations are valid within the limitations of the resistor network model.
Discipline
- 75.70.Cn: Magnetic properties of interfaces (multilayers, superlattices, heterostructures)
- 64.60.-i: General studies of phase transitions(see also 63.70.+h Statistical mechanics of lattice vibrations and displacive phase transitions; for critical phenomena in solid surfaces and interfaces, and in magnetism, see 68.35.Rh, and 75.40.-s, respectively)
- 64.30.Jk: Equations of state of nonmetals
- 72.10.Fk: Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect)
Journal
Year
Volume
Issue
Pages
878-880
Physical description
Dates
published
2017-04
Contributors
author
- Solid State Physics Department, University of Łódź, Pomorska 149/153, PL-90236 Łódź, Poland
author
- Solid State Physics Department, University of Łódź, Pomorska 149/153, PL-90236 Łódź, Poland
References
- [1] K. Warda, J. Phys. Condens. Matter 21, 345301 (2009), doi: 10.1088/0953-8984/21/34/345301
- [2] A. Paja, A. Działo, Acta Phys. Pol. A 125, 1220 (2014), doi: 10.12693/APhysPolA.125.1220
- [3] A. Paja, A. Działo, Acta Phys. Pol. A 123, 470 (2013), doi: 10.12693/APhysPolA.123.770
- [4] M. Ornat, A. Paja, Appl. Phys. A Mater. Sci. Proc. 102, 379 (2011), doi: 10.1007/s00339-010-6016-2
- [5] M. Ornat, A. Paja, J. Phys. Condens. Matter 20, 375102 (2008), doi: 10.1088/0953-8984/20/37/375102
- [6] M. Pereiro, D. Baldomir, S.V. Mankovsky, K. Warda, J. Arias, L. Wojtczak, J. Botana, J. Phys. Condens. Matter 19, 106210 (2007), doi: 10.1088/0953-8984/19/10/106210
- [7] M.B. Stearns, Phys. Rev. B 8, 4383 (1973), doi: 10.1103/PhysRevB.8.4383
- [8] S. Wakoh, J. Yamashita, J. Phys. Soc. Jpn. 21, 1712 (1966), doi: 10.1143/JPSJ.21.1712
- [9] K.J. Duff, T.P. Das, Phys. Rev. B 3, 192 (1971), doi: 10.1103/PhysRevB.3.192
- [9a] K.J. Duff, T.P. Das, Phys. Rev. B 3, 2294 (1971), doi: 10.1103/PhysRevB.3.2294
- [10] A.V. Gold, L. Hodges, P.T. Panousis, D. Stone, Int. J. Magn. 2, 357 (1971)- brak doi nie znaleziono
- [11] N.F. Mott, Adv. Phys. 13, 325 (1964), doi: 10.1080/00018736400101041
- [12] G.G. Cabrera, L.M. Falicov, Phys. Status Solidi B 61, 539 (1974), doi: 10.1002/pssb.2220610219
- [12] G.G. Cabrera, L.M. Falicov, Phys. Status Solidi B 62, 217 (1974), doi: 10.1002/pssb.2220620122
- [13] J.M. Ziman, Electrons and Phonons, The International Series of Monographs on Physics, Eds. N.F. Mott, E.C. Bullard, D.H. Wilkinson, Oxford Univ., London 1960, doi: 10.1093/acprof:oso/9780198507796.001.0001
- [14] P.W. Anderson, Phys. Rev. 124, 41 (1961), doi: 10.1103/PhysRev.124.41
- [15] C.N. Yang, Phys. Rev. 85, 808 (1962), doi: 10.1103/PhysRev.85.808
- [16] Z.-D. Zhang, Philos. Mag. 87, 5309 (2007), doi: 10.1080/14786430701646325
- [17] A. Vedyayev, C. Cowache, N. Ryzhanova, B. Dieny, J. Phys. Condens. Matter 5, 8289 (1993), doi: 10.1088/0953-8984/5/44/019
- [18] J. Barnaś, A. Fuss, R.E. Camley, P. Grünberg, W. Zinn, Phys. Rev. B 42, 8110 (1990), doi: 10.1103/PhysRevB.42.8110
- [19] D.E. Eastman, J. Appl. Phys. 40, 1387 (1969), doi: 10.1063/1.1657682
- [20] W. Zhong, G. Overney, D. Tomanek, Phys. Rev. B 47, 95 (1993), doi: 10.1103/PhysRevB.47.95
- [21] A. Barthélémy, A. Fert, M.N. Baibich, S. Hadjoudj, E. Petroff, P. Etienne, R. Cabanel, S. Lequien, G. Creuzet, J. Appl. Phys. 67, 5908 (1990), doi: 10.1063/1.346013
- [22] A. Chaiken, T.M. Tritt, D.J. Gillespie, J.J. Krebs, P. Lubitz, M.Z. Hanrford, G.A. Prinz, J. Appl. Phys. 69, 4798 (1991), doi: 10.1063/1.348233
- [23] E. Petroff, A. Barthélémy, A. Hamzić, A. Fert, P. Etienne, S. Lequien, G. Creuzet, J. Magn. Magn. Mater. 93, 95 (1991), doi: 10.1016/0304-8853(91)90310-7
- [24] D.M. Edwards, J. Mathon, R.B. Muniz, IEEE Trans. Magn. 27, 3548 (1991), doi: 10.1109/20.102926
- [25] S.F. Lee, W.P. Pratt, Q. Yang, P. Holody, R. Loloee, P.A. Schroeder, J. Bass, J. Magn. Magn. Mater. 118, 1 (1993), doi: 10.1016/0304-8853(93)90147-T
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv131n4088kz