Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 4 | 869-871
Article title

Exchange Bias Effect in NdFeO₃ System of Nanoparticles

Title variants
Languages of publication
We study the effect of nanometric size on the crystal structure, magnetic environment of iron and magnetization in NdFeO₃ system of nanoparticles. The average particle size of NdFeO₃ nanoparticles increases with annealing at 600°C from about 15 nm to 40 nm. The smallest particles on annealed sample have size approximately 30 nm and typically have character of single crystalline samples. All samples adopt orthorhombic crystal structure, space group Pnma with lattice parameters a =5.5817 Å, b=7.7663 Å and c =5.456 Å for as prepared sample. The presence of superparamagnetic particles was indicated by the Mössbauer measurements. The reduction of dimensionality induces a decrease of T_{N1} from 691 K to 544 K. The shift of magnetic hysteresis loop in vertical and horizontal direction was observed at low temperatures after cooling in magnetic field. We attribute such behaviour to exchange bias effect and discuss in the frame of core-shell model.
Physical description
  • [1] W.P. Meiklejohn, C.P. Bean, Phys. Rev. 102, 1413 (1956), doi: 10.1103/PhysRev.102.1413
  • [2] S. Giri, M. Patra, S. Majumdar, J. Phys. Condens. Matter 23, 073201 (2011), doi: 10.1088/0953-8984/23/7/073201
  • [3] Z. Jagličić, M. Zentková, M. Mihalik, Z. Arnold, M. Drofenik, M. Kristl, B. Dojer, M. Kasunič, A. Golobič, M Jagodič, J. Phys. Condens. Matter 24, 056002 (2012), doi: 10.1088/0953-8984/24/5/056002
  • [4] D. Niebieskikwiat, M.B. Salamon, Phys. Rev. B 72, 174422 (2005), doi: 10.1103/PhysRevB.72.174422
  • [5] X.H. Huang, J.F. Ding, G.Q. Zhang, Y. Hou, Y.P. Yao, X.G. Li, Phys. Rev. B 78, 224408 (2008), doi: 10.1103/PhysRevB.78.224408
  • [6] V. Markovich, I. Fita, A. Wisniewski, D. Mogilyansky, R. Puzniak, L. Titelman, C. Martin, G. Gorodetsky, Phys. Rev. B 81, 094428 (2010), doi: 10.1103/PhysRevB.81.094428
  • [7] L. Liu, S.L. Yuan, Z.M. Tian, X. Liu, J.H. He, P. Li, C.H. Wang, X.F. Zheng, S.Y. Yin, J. Phys. D Appl. Phys. 42, 045003 (2009), doi: 10.1088/0022-3727/42/4/045003
  • [8] T. Zhang, M. Dressel, Phys. Rev. B 80, 014435 (2009), doi: 10.1103/PhysRevB.80.014435
  • [9] W. Sławiński, R. Przeniosło, I. Sosnowska, E. Suard, J. Phys. Condens. Matter 17, 4605 (2005), doi: 10.1088/0953-8984/17/29/002
  • [10] J. Bartolomé, E. Palacios, M.D. Kuźmin, F. Bartolomé, Phys. Rev. B 55, 11432 (1997), doi: 10.1103/PhysRevB.55.11432
  • [11] A. Mrakovic, J. Blanusa, D. Primc, M. Perovic, Z. Jaglicic, V. Kusigerski, V. Spasojevic, Ceram. Int. 39, 3771 (2013), doi: 10.1016/j.ceramint.2012.10.216
  • [12] J. Lazurova, M. Mihalik, M. Mihalik Jr., M. Vavra, M. Zentkova, J. Briancin, M. Perovic, V. Kusigerski, O. Schneeweiss, P. Roupcova, K.V. Kamenev, M. Misek, Z. Jaglicic, J. Phys. Conf. Series 592, 012117 (2015), doi: 10.1088/1742-6596/592/1/012117
  • [13] Y. Wang, X. Yan, J. Chen, J. Deng, R. Yua, X. Xing, Cryst. Eng. Commun. 16, 858 (2014), doi: 10.1039/C3CE41434E
  • [14] M. Eibschütz, S. Shtrikman, D. Treves, Phys. Rev. 156, 562 (1967), doi: 10.1103/PhysRev.156.562
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.