PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 4 | 839-841
Article title

Growth of Pt-Ni Nanoparticles of Different Composition using Electrodeposition and Characterization of Their Magnetic Properties

Content
Title variants
Languages of publication
EN
Abstracts
EN
We prepared Pt₃Ni and PtNi₃ nanoparticles of various sizes on conductive and atomically smooth highly oriented pyrolytic graphite surfaces using potentiostatic electrodeposition. We can control the size of electrodeposited nanoparticles and their density on the surface by changing the deposition time. The morphology of nanoparticles was determined by scanning electron microscopy. PtNi₃ particles have spherical shape, while Pt₃Ni particles have more irregular shape. Composition of particles was confirmed by energy dispersive spectroscopy. We have measured magnetic properties of both systems with 100 s preparation time, superparamagnetic behavior was observed in PtNi₃ nanoparticles with blocking temperature T_{B}=225 K.
Keywords
Contributors
author
  • Institute of Physics, Faculty of Sciences, P.J. Safarik University, Park Angelinum 9, 041 54 Košice, Slovakia
author
  • Institute of Physics, Faculty of Sciences, P.J. Safarik University, Park Angelinum 9, 041 54 Košice, Slovakia
author
  • Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
author
  • Institute of Physics, Faculty of Sciences, P.J. Safarik University, Park Angelinum 9, 041 54 Košice, Slovakia
author
  • Institute of Physics, Faculty of Sciences, P.J. Safarik University, Park Angelinum 9, 041 54 Košice, Slovakia
author
  • Institute of Physics, Faculty of Sciences, P.J. Safarik University, Park Angelinum 9, 041 54 Košice, Slovakia
author
  • Institute of Physics, Faculty of Sciences, P.J. Safarik University, Park Angelinum 9, 041 54 Košice, Slovakia
References
  • [1] S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Science 287, 1989 (2000), doi: 10.1126/science.287.5460.1989
  • [2] M.M. Miller, G.A. Prinz, S.F. Cheng, S. Bounnak, Appl. Phys. Lett. 81, 2211 (2002), doi: 10.1063/1.1507832
  • [3] V. Franco, K.R. Pirota, V.M. Prida, A. Maia, J.C. Neto, A. Conde, M. Knobel, B. Hernando, M. Vazquez, Phys. Rev. B 77, 104434 (2008), doi: 10.1103/PhysRevB.77.104434
  • [4] Y. Liu, C.M. Hangarter, U. Bertocci, T.P. Moffat, J. Phys. Chem. C 116, 7848 (2012), doi: 10.1021/jp300672h
  • [5] M.C. Cadeville, J.L. Moran-López, Phys. Rep. 153, 331 (1987), doi: 10.1016/0370-1573(87)90116-5
  • [6] D. Spemann, P. Esquinazi, A. Setzer, W. Böhlmann, AIP Adv. 4, 107142 (2014) and references therein., doi: 10.1063/1.4900613
  • [7] D.K. Kim, Y. Zhang, W. Voit, K.V. Rao, M. Muhammed, J. Magn. Magn. Mater. 225, 30 (2001), doi: 10.1016/S0304-8853(00)01224-5
  • [8] R. Das, A. Gupta, D. Kumar, S.H. Oh, S.J. Pennycook, A.F. Hebard, J. Phys. Condens. Matter 20, 385213 (2008), doi: 10.1088/0953-8984/20/38/385213
  • [9] G.A. Badini, V. Vega, A. Ebbing, D. Mishra, P. Szary, V.M. Prida, O. Petracic, H. Zabel, Nanotechnology 22, 285608 (2011), doi: 10.1088/0957-4484/22/28/285608
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv131n4075kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.