Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 4 | 830-832
Article title

Magnetic Properties of Hexagonal Graphene Nanomeshes

Title variants
Languages of publication
Graphene nanomeshes are the nanostructures consisting of graphene flake with a regular pattern of antidots (holes) punched through it. Thanks to the energy gaps opening in electronic spectrum, nanomesh-based transistors offer improved I_{on}/I_{off} ratio of the collector current while supporting up to 100 larger driving currents than nanoribbon-based devices. In this paper the electronic and magnetic structure of graphene nanomeshes with hexagonally shaped antidots was studied. It has been found that the internal zigzag edges support magnetic moments and that lowest energy magnetic configuration is antiferromagnetic. The density of states calculated for ground state configuration exhibit the energy gap which can be substantially reduced upon switching (e.g. by external magnetic field) to ferromagnetic configuration. Based on this we predict that the structure will exhibit magnetoresistive effect, which makes graphene nanomeshes of this kind relevant for spintronic applications.
Physical description
  • [1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004), doi: 10.1126/science.1102896
  • [2] A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009), doi: 10.1103/RevModPhys.81.109
  • [3] K.I. Bolotin, K.J. Sikes, J. Hone, H.L. Stormer, P. Kim, Phys. Rev. Lett. 101, 096802 (2008), doi: 10.1103/PhysRevLett.101.096802
  • [4] X. Du, I. Skachko, A. Barker, E.Y. Andrei, Nat. Nanotechnol. 3, 491 (2008), doi: 10.1038/nnano.2008.199
  • [5] Y.-M. Lin, K.A. Jenkins, A. Valdes-Garcia, J.P. Small, D.B. Farmer, P. Avouris, Nano Lett. 9, 422 (2009) ., doi: 10.1021/nl803316h
  • [6] L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K.L. Wang, Y. Huang, X. Duan, Nature 467, 305 (2010), doi: 10.1038/nature09405
  • [7] Y.-M. Lin, A. Valdes-Garcia, S.-J. Han, D.B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, K.A. Jenkins, Science 332, 1294 (2011), doi: 10.1126/science.1204428
  • [8] F. Schwierz, Nat. Nanotechnol. 5, 487 (2010), doi: 10.1038/nnano.2010.89
  • [9] Y.-W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006), doi: 10.1103/PhysRevLett.97.216803
  • [10] M.Y. Han, B. Özyilmaz, Y. Zhang, P. Kim, Phys. Rev. Lett. 98, 206805 (2007), doi: 10.1103/PhysRevLett.98.206805
  • [11] J. Bai, Y. Huang, Mater. Sci. Eng. R Rep. 70, 341 (2010), doi: 10.1016/j.mser.2010.06.019
  • [12] J. Bai, X. Zhong, S. Jiang, Y. Huang, X. Duan, Nat. Nanotechnol. 5, 190 (2010), doi: 10.1038/nnano.2010.8
  • [13] J. Yang, M. Ma, L. Li, Y. Zhang, W. Huang, X. Dong, Nanoscale 6, 13301 (2014), doi: 10.1039/C4NR04584J
  • [14] C. Tao, L. Jiao, O.V. Yazyev, Y.-C. Chen, J. Feng, X. Zhang, R.B. Capaz, J.M. Tour, A. Zettl, S.G. Louie, H. Dai, M.F. Crommie, Nat. Phys. 7, 616 (2011), doi: 10.1038/nphys1991
  • [15] K. Tadyszak, M. Maćkowiak, M.A. Augustyniak-Jabłokow, R. Strzelczyk, J. Mol. Struct. 1076, 31 (2014), doi: 10.1016/j.molstruc.2014.07.047
  • [16] L. Pisani, J.A. Chan, B. Montanari, N.M. Harrison, Phys. Rev. B 75, 064418 (2007), doi: 10.1103/PhysRevB.75.064418
  • [17] G.Z. Magda, X. Jin, I. Hagymasi, P. Vancso, Z. Osvath, P. Nemes-Incze, C. Hwang, L.P. Biro, L. Tapaszto, Nature 514, 608 (2014), doi: 10.1038/nature13831
  • [18] M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, G. Seifert, Phys. Rev. B 58, 7260 (1998), doi: 10.1103/PhysRevB.58.7260
  • [19] B. Aradi, B. Hourahine, T. Frauenheim, J. Phys. Chem. A 111, 5678 (2007), doi: 10.1021/jp070186p
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.