Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 4 | 747-749
Article title

Structure and Magnetic Properties of Iron/Iron-Oxide Nanoparticles Prepared by Precipitation from Solid State Solution

Title variants
Languages of publication
The influence of precipitation temperature on structural and magnetic properties of iron/iron-oxide nanoparticles is investigated. Nanoparticles were prepared by precipitation of γ-Fe precipitates in Cu-Fe solid solution and subsequently isolated by matrix dissolution. Precipitation annealing temperatures were 773, 873, and 973 K. Nanoparticles core-shell structure and morphology were characterized by X-ray diffraction, high-resolution transmission electron microscopy, and selected area electron diffraction. These measurements showed that average diameter of nanoparticles increases with precipitation temperature from 8.5 nm to 20.5 nm. The measurements of magnetization as a function of temperature and applied field have been performed by SQUID magnetometer in temperature range from 5 K to 200 K.
  • Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
  • Institute of Materials, Faculty of Metallurgy, Technical University of Košice, Letná 9, 040 01 Košice, Slovakia
  • Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelinum 9, 041 54 Košice, Slovakia
  • Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
  • Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
  • [1] D. Ramimoghadam, S. Bagheri, S.B.A. Hamid, J. Magn. Magn. Mater. 368, 207 (2014), doi: 10.1016/j.jmmm.2014.05.015
  • [2] H. Yan, Ch. You, Z. Song, B. Yu, Y. Shen Mater. Chem. Phys. 113, 46 (2009), doi: 10.1016/j.matchemphys.2008.06.036
  • [3] H. Iida, K. Takayanagi, T. Nakanishi, T. Osaka, J. Coll. Interf. Sci. 314, 274 (2007), doi: 10.1016/j.jcis.2007.05.047
  • [4] C. de Montferrand, L. Hu, I. Milosevic, V. Russier, D. Bonnin, L. Motte, A. Brioude, Y. Lalatonne, Acta Biomater. 9, 6150 (2013), doi: 10.1016/j.actbio.2012.11.025
  • [5] A. Shavel, L.M. Liz-Marzan, Phys. Chem. Chem. Phys. 11, 3762 (2009), doi: 10.1039/B822733K
  • [6] H. Yang, T. Ogawa, D. Hasegawa, M. Takahashi, J. Appl. Phys. 103, 07D526 (2008), doi: 10.1063/1.2833820
  • [7] J. Cheon, N.-J. Kang, S.-M. Lee, J.-H. Lee, J.-H. Yoon, S.J. Oh, J. Am. Chem. Soc. 126, 1950 (2004), doi: 10.1021/ja038722o
  • [8] S.-J. Park, S. Kim, S. Lee, Z.G. Khim, K. Char, T. Hyeon, J. Am. Chem. Soc. 122, 8581 (2000), doi: 10.1021/ja001628c
  • [9] M. Zhu, G. Diao, J. Phys. Chem. C 115, 18923 (2011), doi: 10.1021/jp200418j
  • [10] Q. He, T. Yuan, S. Wei, N. Haldolaarachchige, Z. Luo, D.P. Young, A. Khasanov, Z. Guo, Angew. Chem. Int. Ed. 51, 8842 (2012), doi: 10.1002/anie.201203347
  • [11] A.P. Hammersley, FIT2D: An Introduction and Overview, ESRF Internal Report, ESRF97HA02T, 1997
  • [12] K.K. Fung, B. Qin, X.X. Zhang, Mater. Sci. Eng. 286, 135 (2000), doi: 10.1016/S0921-5093(00)00717-6
  • [13] O. Milkovič, G. Janak, S. Niznik, S. Longauer, L. Frohlich, Mater. Lett. 64, 144 (2010), doi: 10.1016/j.matlet.2009.10.025
  • [14] R. Cornell, U. Schwertmann, The Iron Oxides, Wiley-VCH, Weinheim 2003
  • [15] C.-R. Lin, Y.-M. Chu, S.-C. Wang, Mater. Lett. 60, 447 (2006), doi: 10.1016/j.matlet.2005.09.009
  • [16] X. Batlle, A. Labarta, J. Phys. D Appl. Phys. 35, R15 (2002), doi: 10.1088/0022-3727/35/6/201
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.