EN
Divalent zinc, copper and cobalt doped nickel ferrites with the chemical formula Ni_{1-x-y-z}Zn_{x}Cu_{y}Co_{z}Fe₂O₄ where x values ranging from 0.4 to 0.6, y=0.1, z=0.01 and 0.02 have been synthesized by conventional ceramic method. The effect of Zn²⁺, Cu²⁺ and Co²⁺ ions substitution on the selected microstructural and magnetic characteristics have been investigated to examine the utility of prepared ferrite materials for high-frequency applications. X-ray diffraction measurements confirmed the single-phase spinel cubic structure in all the samples and modifications in lattice parameter according to the ionic radii size of doped ions. The net magnetic moment, given by the differences between the magnetic moments of A and B sublattice, increased with raising substitution of Ni²⁺ ions. The measured frequency dispersion of complex permeability was discussed in terms of the changes in chemical composition, microstructure and the associated processes of resonance and/or relaxation due to domain wall movements and damping of spin rotations contributing to the fall of permeability and rise of magnetic losses.