Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 4 | 669-671

Article title

The Comparison of Hardness and Coercivity Evolution in Various Fe-B Based Glasses (Including FINEMET Precursor) during Relaxation and Crystallization

Content

Title variants

Languages of publication

EN

Abstracts

EN
Inverse relation exists between the hardness and coercivity change within the whole period of structural relaxation in the investigated Fe-B(Si) based metallic glasses. This relation is independent of B-content and composition. This inverse relation is no more valid in binary Fe-B glasses after the onset of crystallization, when both the hardness and coercivity exhibit rapid increase. In contrast, the inverse relation was in FINEMET type glasses between these properties preserved in the first step of crystallization during the whole period of nanocrystallization.

Keywords

Contributors

author
  • Department of Materials Technology, GAMF Faculty of Engineering and Computer Science, Pallasz Athéné University, Izsáki út 10., 6000 Kecskemét, Hungary
author
  • Department of Materials Technology, GAMF Faculty of Engineering and Computer Science, Pallasz Athéné University, Izsáki út 10., 6000 Kecskemét, Hungary
author
  • Budapest University of Technology and Economics, Faculty of Transportation Engineering and Vehicle Engineering, Department of Automobiles and Vehicles Manufacturing, Műegyetem rkp 3., 1111 Budapest, Hungary

References

  • [1] F.E. Luborsky, in: Amorphous Metallic Alloys, Ed. F.E. Luborsky, Butterworths Monographs in Materials, Butterworths, London 1984, p. 360
  • [2] Tsai-Wei Wu, F. Spaepen, Philos. Mag. B 61, 739 (1990), doi: 10.1080/13642819008219307
  • [3] A. Lovas, É. Kisdi-Koszó, L. Potocky, L. Novák, J. Mater. Sci. 22, 1535 (1987), doi: 10.1007/BF01132372
  • [4] A. Singh, Y. Osawa, H. Somekawa, T. Mukai, Mater. Sci. Eng. A 611, 242 (2014), doi: 10.1016/j.msea.2014.05.091
  • [5] G. Herzer, Handbook of Magnetic Materials, Ed. K.H.J. Buschow, Vol. 10, Elsevier Sci., Amsterdam 1997, Ch. 3, p. 415
  • [6] Z. Pál, J. Takács, Periodica Polytechn. Transp. Eng. 35, 65 (2007)
  • [7] L. Potocky, L. Novák, É. Kisdi-Koszó, A. Lovas, J. Takács, Acta Phys. Slov. 29, 281 (1979)
  • [8] C.A. Angel, K.L. Ngai, G.B. McKenna, P.F. McMillan, S.W. Martin, J. Appl. Phys. 88, 3113 (2000), doi: 10.1063/1.1286035
  • [9] L. Gránásy, A. Lovas, J. Magn. Magn. Mater. 41, 113 (1984), doi: 10.1016/0304-8853(84)90150-1
  • [10] Cs. Gulyás, A. Lovas, Periodica Politechn. Ser. Transp. Eng. 32, 91 (2004)
  • [11] P. Benassi, A. Giugni, M. Nardone, J. Chem. Phys. 135, 034503 (2011), doi: 10.1063/1.3609975
  • [12] A.L. Greer, in: Structural Relaxation and Atomic Transport in Amorphous Alloys in Rapidly Solidified Alloys, Ed. H. Liebermann, Marcel Dekker, New York 1993, Ch. 10
  • [13] L. Wang, Q. Zhang, X. Cui, F. Zu, J. Non-Cryst. Solids 419, 51 (2015), doi: 10.1016/j.jnoncrysol.2015.03.036

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv131n4019kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.