PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 4 | 651-653
Article title

Renormalization Group Calculation of Dynamic Exponent in the Models E and F with Hydrodynamic Fluctuations

Content
Title variants
Languages of publication
EN
Abstracts
EN
The renormalization group method is applied in order to analyze models E and F of critical dynamics in the presence of velocity fluctuations generated by the stochastic Navier-Stokes equation. Results are given to the one-loop approximation for the anomalous dimension γ_{λ} and fixed-points' structure. The dynamic exponent z is calculated in the turbulent regime and stability of the fixed points for the standard model E is discussed.
Keywords
Contributors
author
  • Institute of Experimental Physics SAS, Watsonova 47, 040 01 Košice, Slovakia
  • BLTP, Joint Institute for Nuclear Research, Dubna, Russia
author
  • Institute of Experimental Physics SAS, Watsonova 47, 040 01 Košice, Slovakia
  • Institute of Physics, Faculty of Sciences, P.J. Safarik University, Park Angelinum 9, 041 54 Košice, Slovakia
  • 'Peoples' Friendship University of Russia (RUDN University) 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
author
  • Department of Theoretical Physics, St. Petersburg University, Ulyanovskaya 1, St. Petersburg, Petrodvorets, 198504 Russia
  • Institute of Physics, Faculty of Sciences, P.J. Safarik University, Park Angelinum 9, 041 54 Košice, Slovakia
  • 'Peoples' Friendship University of Russia (RUDN University) 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
author
  • Department of Theoretical Physics, St. Petersburg University, Ulyanovskaya 1, St. Petersburg, Petrodvorets, 198504 Russia
References
  • [1] U. Täuber, Critical Dynamics: A Field Theory Approach to Equilibrium and Non-Equilibrium Scaling Behavior, Cambridge University Press, New York 2014, doi: 10.1017/CBO9781139046213
  • [2] R. Folk, G. Moser, J. Phys. A Math. Gen. 39, R207 (2006), doi: 10.1088/0305-4470/39/24/R01
  • [3] M. Hnatich, M.V. Komarova, M.Y. Nalimov, Theor. Math. Phys. 175, 779 (2013), doi: 10.1007/s11232-013-0064-7
  • [4] A.N. Vasil'ev, The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics, Chapman Hall/CRC, Boca Raton 2004, doi: 10.1201/9780203483565
  • [5] H. Kleinert, V. Schulte-Frohlinde, Critical Properties of φ⁴ Theories, World Sci., Singapore 2001, doi: 10.1142/4733
  • [6] J.A. Lipa, J.A. Nissen, D.A. Stricker, D.R. Swanson, T.C.P. Chui, Phys. Rev. B, 68, 174518 (2003), doi: 10.1103/PhysRevB.68.174518
  • [7] M. Dančo, M. Hnatich, M.V. Komarova, D.M. Krasnov, T. Lučivjanský, L. Mižišin, M.Y. Nalimov,Theor. Math. Phys. 176, 888 (2013), doi: 10.1007/s11232-013-0076-3
  • [8] J. Honkonen, M.Yu. Nalimov, Z. Phys. B 99, 297 (1996), doi: 10.1007/s002570050040
  • [9] M. Dančo, M. Hnatič, M.V. Komarova, T. Lučivjanský, M.Yu. Nalimov, Phys. Rev. E 93, 012109 (2016), doi: 10.1103/PhysRevE.93.012109
  • [10] C. De Dominicis, L. Peliti, Phys. Rev. B 18, 353 (1978), doi: 10.1103/PhysRevB.18.353
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv131n4013kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.