Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 3 | 490-494

Article title

Thermodynamic Properties of Potassium Oxide (K₂O) Nanoparticles by Molecular Dynamics Simulations

Content

Title variants

Languages of publication

EN

Abstracts

EN
Potassium oxide (K₂O) is a reagent for testing the presence of other compounds in chemical reactions. It is also used in compounding cement and in glass making. However properties of K₂O in nanoscale are still unclear. In this work, thermodynamic properties of spherical K₂O nanoparticles have been investigated. Size dependent cohesive energy, melting point and glass transition temperature have been computed for different sizes of K₂O nanoparticles by molecular dynamics simulations. Thermal expansion coefficients of nanoparticles at zero pressure and various temperatures have been also calculated. Melting point depression for K₂O nanoparticles was determined. The significant change in cohesive energy was obtained for particles smaller than 5.4 nm. The presented model is successful in understanding the size-dependent thermodynamics of spherical K₂O nanoparticles. Theoretical investigations of the thermal properties of K₂O nanoparticles have not been presented previously.

Keywords

EN

Contributors

author
  • Trakya University, Faculty of Science, Department of Physics, Balkan Campus, 22030 Edirne, Turkey
  • Trakya University, Faculty of Science, Department of Physics, Balkan Campus, 22030 Edirne, Turkey

References

  • [1] E. Zintl, A. Harder, B. Dauth, Zeitschrift für Elektrochemie und angewandte physikalische Chemie 40, 588 (1934)
  • [2] R. Dovesi, C. Roetti, C. Freyria-Fara, M. Prencipe, V.R. Saunders, Chem. Phys. 156, 11 (1991), doi: 10.1016/0301-0104(91)87032-Q
  • [3] Z. Cancarevic, J.C. Schön, M. Jansen, Phys. Rev. B 73, 224114 (2006), doi: 10.1103/PhysRevB.73.224114
  • [4] Y.N. Zhuravlev, Y.M. Basalaev, A.S. Poplavnoi, Russ. Phys. J. 44, 398 (2001), doi: 10.1023/A:1011948413163
  • [5] R.D. Eithiraj, G. Jaiganesh, G. Kalpana, Phys. B 396, 124 (2007), doi: 10.1016/j.physb.2007.03.024
  • [6] M. Moakafi, R. Khenata, A. Bouhemadou, H. Khachai, B. Amrani, D. Rached, M. Rerat, Eur. Phys. J. B 64, 35 (2008), doi: 10.1140/epjb/e2008-00286-6
  • [7] Yu.N. Zhuravlev, D.V. Korabel'nikov, M.V. Aleinikova, Phys. Solid State 54, 1518 (2012), doi: 10.1134/S1063783412070360
  • [8] S. Plimpton, J. Comp. Phys. 117, 1 (1995), doi: 10.1006/jcph.1995.1039
  • [9] J.D. Gale, A.L. Rohl, Mol. Simul. 29, 291 (2003), doi: 10.1080/0892702031000104887
  • [10] P.P. Ewald, Ann. Phys. 64, 253 (1921), doi: 10.1002/andp.19213690304
  • [11] D.J. Binks, Ph.D. Thesis, Surrey University, 1994
  • [12] A. Melillou, B.R.K. Gupta, Czechoslovak J. Phys. 41, 813 (1991), doi: 10.1007/BF01599686
  • [13] http://chemister.ru/Database/properties-en.php?dbid=1&id=516
  • [14] Yu.N. Zhuravlev, O.S. Obolonskaya, J. Struct. Chem. 51, 1005 (2010), doi: 10.1007/s10947-010-0157-1

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv131n344kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.