Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 3 | 484-486
Article title

A Different Flow Field Design Approach for Performance Improvement of a PEMFC

Title variants
Languages of publication
Flow fields influence the deployment of the reactant gases over the surface of catalyst layer and the removal of the produced water from the cell. An optimum flow field design should provide lowest energy loss, uniform mass distribution and minimize pressure drop between inlet and outlet of the gas stream. An even reactant distribution reduces the mass transport losses and thus allows higher power density. This study is focused on flow fields inspired by veins of the tree leaves, which have effective performance improvement by minimizing the pressure drop and even deploy reactant gases without water flooding. The branching of flow channels corresponds to the Murray's law, which is also applicable to plants. Additionally semi cylindrical obstacles were fabricated at the bottom of the daughter channels to increase the diffusion into the gas diffusion layer. Cylindrical obstacles were applied to reduce the concentration losses, especially at the high current densities. Cell performance and current density vs temperature distribution measurements show that the new innovative designs shows a better performance compared to standard serpentine design by 42.1% at 0.4 V operating voltage. Furthermore, homogenous current and temperature distributions and better water removal are achieved.
Physical description
  • [1] A. Kopanidis, A. Theodorakakos, M. Gavaises, D. Bouris, Int. J. Thermal Sci. 50, 456 (2011), doi: 10.1016/j.ijthermalsci.2010.11.014
  • [2] O.Z. Sharaf, M.F. Orhan, Renew. Sust. Energ. Rev. 32, 810 (2014), doi: 10.1016/j.rser.2014.01.012
  • [3] M. Grujicic, K.M. Chittajallu, Chem. Eng. Sci. 59, 5883 (2004), doi: 10.1016/j.ces.2004.07.045
  • [4] X.D. Wang, Y.Y. Duan, W.M. Yan, X.F. Peng, Electrochim. Acta 53, 5334 (2008), doi: 10.1016/j.electacta.2008.02.095
  • [5] A. Aiyejina, M.K.S. Sastry, J. Fuel Cell Sci. Tech. 9, 011011 (2012), doi: 10.1115/1.4005393
  • [6] D. Spernjak, A.K. Prasad, S.G. Advani, J. Power Sources 195, 3553 (2010), doi: 10.1016/j.jpowsour.2009.12.031
  • [7] S. Shimpalee, S. Greenway, J.W. Van Zee, J. Power Sources 160, 398 (2006), doi: 10.1016/j.jpowsour.2006.01.099
  • [8] N. Bunmark, S. Limtrakul, M.W. Fowler, T. Vatanatham, J. Gostick, Int. J. Hydrogen Energ. 35, 6887 (2010), doi: 10.1016/j.ijhydene.2010.04.027
  • [9] P. Quan, M.C. Lai, J. Power Sources 164, 222 (2007), doi: 10.1016/j.jpowsour.2006.09.110
  • [10] P.M. Belchor, M. Madalena, C. Forte, D.E.O.S Carpenter, Int. J. Hydrogen Energ. 37, 11904 (2012), doi: 10.1016/j.ijhydene.2012.05.091
  • [11] A. Su, F.B. Weng, C.Y. Hsu, Y.M. Chen, Int. J. Hydrogen Energy, 31, 1031 (2006), doi: 10.1016/j.ijhydene.2005.12.019
  • [12] N. Akhtar, A. Qureshi, J. Scholta, C. Hartnig, M. Messerschmidt, W. Lehnert, Int. J. Hydrogen Energy 34, 3104 (2009), doi: 10.1016/j.ijhydene.2009.01.022
  • [13] X. Liu, H. Guo, F. Ye, C. Ma, Int. J. Hydrogen Energy 33, 1040 (2008), doi: 10.1016/j.ijhydene.2007.11.018
  • [14] P.V. Suresh, S. Jayanti, Int. J. Hydrogen Energy 35, 6872 (2010), doi: 10.1016/j.ijhydene.2010.04.052
  • [15] Y.S. Chen, H. Peng, J. Power Sources, 196, 1992 (2011), doi: 10.1016/j.jpowsour.2010.09.094
  • [16] J. Lobato, P. Canizares, M.A. Rodrigo, F.J. Pinar, D. Ubeda, J. Power Sources 196, 4209 (2011), doi: 10.1016/j.jpowsour.2010.10.017
  • [17] L. Peng, J. Mai, P. Hu, X. Lai, Z. Lin, Renew. Energy 36, 1413 (2011), doi: 10.1016/j.renene.2010.11.031
  • [18] D. Úbeda, P. Cańizares, M.A. Rodrigo, F.J. Pinar, J. Lobato, Int. J. Hydrogen Energ. 39, 21678 (2014), doi: 10.1016/j.ijhydene.2014.06.045
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.