Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 3 | 477-480

Article title

Vibration Noise Harshness of a Light Truck Driveshaft, Analysis and Improvement with Six Sigma Approach

Content

Title variants

Languages of publication

EN

Abstracts

EN
This paper deals with the application of six sigma methodology for optimization of a cardan shaft. The aim of this optimization is to reduce vibration of the drive shaft and consequently improve vibration noise harshness of the vehicle. The six sigma methodology has been applied to a light truck, which has received excessive vibration and noise complaints. The define-measure-analyze-improve-control approach has been followed to enhance the vibration noise harshness statistics. The result shows that all expected vibration noise harshness performance targets have been dramatically improved when compared to the initial values. As a conclusion, the case study on a light truck is a useful reference to improve vehicle performance for vibration noise harshness.

Keywords

Contributors

author
  • Kocaeli University, Ford Otosan Ihsaniye Vocational School of Automotive, Kocaeli, Turkey
author
  • Kocaeli University, Department of Mechanical Engineering, Kocaeli, Turkey
author
  • Kocaeli University, Department of Industrial Engineering, Kocaeli, Turkey
author
  • Yazaki Corporation, Romania

References

  • [1] I. Porat, Mech. Mach. Theory 15, 245 (1980), doi: 10.1016/0094-114X(80)90019-1
  • [2] J.E. Baker, Mech. Mach. Theory 37, 1127 (2002), doi: 10.1016/S0094-114X(02)00042-3
  • [3] I. Holsteins, J. Anthonis, H. Ramon, Mech. Syst. Signal Pr. 19, 105 (2005), doi: 10.1016/j.ymssp.2003.10.001
  • [4] E.R. Wagner, C.E. Cooney, in: Universal Joint and Drive Shaft Design Manual, Eds. E.R. Wagner, SAE International, Warrendale 1979, p. 39
  • [5] A.H. Berker, in: Universal Joint and Drive Shaft Design Manual, Eds. E.R. Wagner, SAE International, Warrendale 1979, p. 407
  • [6] H.A. DeSmidt, K.W. Wang, E.C. Smith, J. App. Mech. 69, 261 (2002), doi: 10.1115/1.1460907
  • [7] B. Porter, J. Mech. Eng. Sci. 3, 324 (1961), doi: 10.1243/JMES_JOUR_1961_003_044_02
  • [8] B. Porter, Proc. R. Soc. A 277, 92 (1964), doi: 10.1098/rspa.1964.0007
  • [9] S.I. Chang, J. Sound Vib. 229, 993 (2000), doi: 10.1006/jsvi.1999.2507
  • [10] S.F. Asokanthan, P.A. Meehan, J. Sound Vib. 233, 297 (2000), doi: 10.1006/jsvi.1999.2802
  • [11] S.F. Asokanthan, M.C. Hwang, J. Vib. Acoust. 118, 368 (1996), doi: 10.1115/1.2888192
  • [12] S.F. Asokanthan, X.H. Wang, J. Sound Vib. 194, 83 (1996), doi: 10.1006/jsvi.1996.0345
  • [13] A.J. Mazzei Jr., R.A. Scott, J. Sound Vib. 244, 555 (2001), doi: 10.1006/jsvi.2000.3503
  • [14] A.J. Mazzei Jr., A. Argento, R.A. Scott, J. Sound Vib. 222, 19 (1999), doi: 10.1006/jsvi.1998.1986
  • [15] M.F. Dimentberg, Int. J. Nonlinear Mech. 40, 1263 (2005), doi: 10.1016/j.ijnonlinmec.2005.05.009
  • [16] M.F. Dimentberg, Int. J. Nonlinear Mech. 40, 711 (2005), doi: 10.1016/j.ijnonlinmec.2004.08.008
  • [17] H.W. Chen, W.X. Ji, Q.J. Zhang, Y. Cao, S.Y. Fan, J. Mech. Sci. Technol. 26, 335 (2012), doi: 10.1007/s12206-011-0812-2
  • [18] F.L. Barber, M.Sc. Thesis, Massachusetts Institute of Technology, Cambridge 1988
  • [19] T. Iwatsubo, M. Saigo, J. Sound Vib. 95, 9 (1984), doi: 10.1016/0022-460X(84)90254-2
  • [20] H.A. DeSmidt, Ph.D. Thesis, Pennsylvania State University, Pennsylvania 2005
  • [21] A. Farshidianfar, M. Ebrahimi, H. Rahnejat, M.T. Menday, M. Moavenian, J. Mech. Eng. Sci. 216, 249 (2002), doi: 10.1177/146441930221600305

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv131n340kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.