Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 3 | 440-442

Article title

Deformations and Tensile Fracture of Carbon Nanotubes Based on the Numerical Homogenization

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
The existence of defects in nanostructures has a significant influence on their mechanical properties. A nonlinear finite element model of single-walled carbon nanotube without and with atom vacancy defects is presented. The numerical efficient formulation for carbon nanotubes is discussed considering the geometry, together with a finite element discretization, including the atomic potential. The effective mechanical properties are evaluated based on the homogenization theory. The results for pristine and defective single-walled carbon nanotube are presented in the form of stress-strain curves. Vacancy defects noticeably reduce the failure stresses and failure strains.

Keywords

EN

Year

Volume

131

Issue

3

Pages

440-442

Physical description

Dates

published
2017-03

Contributors

author
  • Cracow University of Technology, Institute of Machine Design, 31-864 Cracow, Poland

References

  • [1] M.M. Shokrieh, R. Rafiee,Mech. Compos. Mater. 46, 155 (2010), doi: 10.1007/s11029-010-9135-0
  • [2] P.C. Ma, J.K. Kim, Carbon nanotubes for polymer reinforcement, CRC Press, Boca Raton 2011
  • [3] M. Chwał, A. Muc, Compos. B 88, 295 (2016), doi: 10.1016/j.compositesb.2015.11.009
  • [4] A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianilos, M.M.J. Treacy, Phys. Rev. B 58, 14013 (1998), doi: 10.1103/PhysRevB.58.14013
  • [5] A.V. Krasheninnikov, K. Nordlund, J. Vac. Sci. Technol. B 20, 728 (2002), doi: 10.1116/1.1463728
  • [6] S.L. Mielke, D. Troya, S. Zhang, J.L. Li, S. Xiao, R. Car, R.S. Ruoff, G.C. Schatz, T. Belytschko, Chem. Phys. Lett. 390, 413 (2004), doi: 10.1016/j.cplett.2004.04.054
  • [7] S. Zhang, S.L. Mielke, R. Khare, D. Troya, R.S. Ruoff, G.C. Schatz, T. Belytschko, Phys. Rev. 71, 115403 (2005), doi: 10.1103/PhysRevB.71.115403
  • [8] W.H. Duan, Q. Wang, K.M. Liew, X.Q. He, Carbon 45, 1769 (2007), doi: 10.1016/j.carbon.2007.05.009
  • [9] K.M. Liew, X.Q. He, C.H. Wong, Acta Mater. 52, 2521 (2004), doi: 10.1016/j.actamat.2004.01.043
  • [10] M. Chwał, Procedia Eng. 10, 1579 (2011), doi: 10.1016/j.proeng.2011.04.264
  • [11] M. Chwał, Adv. Material. Res. 849, 88 (2014), doi: 10.4028/www.scientific.net/AMR.849.88
  • [12] A. Muc, M. Chwał, A. Banaś, Biuletyn WAT 61, 135 (2012)
  • [13] M. Chwał, Appl. Mech. Material. 477, 1225 (2014), doi: 10.4028/www.scientific.net/AMM.477-478.1225
  • [14] J. Tersoff, Phys. Rev. Lett. 56, 632 (1986), doi: 10.1103/PhysRevLett.56.632
  • [15] D.W. Brenner, Phys. Rev. B 42, 9458 (1990), doi: 10.1103/PhysRevB.42.9458
  • [16] K.I. Tserpes, N. Silvestre (Eds.), Modeling of carbon nanotubes, graphene and their composites, Springer, Heidelberg 2014
  • [17] C. Li, T.W. Chou, Compos. Sci. Technol. 66, 2409 (2006), doi: 10.1016/j.compscitech.2006.01.013

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv131n330kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.