PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 3 | 432-436
Article title

Characterization of 2D Hybrid Cellular Automata with Periodic Boundary

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
We investigate main theoretical aspects of two-dimensional linear-hybrid cellular automata with periodic boundary condition over the Galois field GF(2). We focus on the characterization of two-dimensional hybrid linear cellular automata by way of a special algorithm. Here we set up a relation between reversibility of cellular automata and characterization of two-dimensional hybrid linear cellular automata with a special boundary conditions, i.e. periodic case. The determination of the characterization problem of special type of cellular automaton is studied by means of the matrix algebra theory. It is believed that this type of cellular automata could find many different applications in special case situations, e.g. image processing area, textile design, video processing, DNA research, etc., in the near future.
Keywords
EN
Contributors
author
  • Department of Mathematics, Harran University, Sanliurfa, 63120, Turkey
author
  • Department of Mathematics, Harran University, Sanliurfa, 63120, Turkey
author
  • Department of Mathematics, Zirve University, 27260, Gaziantep, Turkey
References
  • [1] J. Von Neumann, The theory of self-reproducing automata, Ed. A.W. Burks, Univ. of Illinois Press, Urbana 1966
  • [2] S. Wolfram, Rev. Mod. Phys. 55, 601 (1983), doi: 10.1103/RevModPhys.55.601
  • [3] P.P. Choudhury, B.K. Nayak, S. Sahoo, S.P. Rath, arXiv: 0804.2346 (2005) http://arXiv.org/abs/0804.2346
  • [4] K. Dihidar, P.P. Choudhury, Inf. Sci. 165, 91 (2004), doi: 10.1016/j.ins.2003.09.024
  • [5] H. Akın, Appl. Math. Computation 170, 339 (2005), doi: 10.1016/j.amc.2004.11.032
  • [6] H. Akın, I. Siap, Infor. Proces. Letters 103, 24 (2007), doi: 10.1016/j.ipl.2007.02.002
  • [7] J. Gravner, G. Gliner, M. Pelfrey, Phys. D 240, 1460 (2011), doi: 10.1016/j.physd.2011.06.015
  • [8] U. Sahin, F. Sahin, S. Uguz, in: 10th Int. Conf. IEEE, 2013, p. 228, doi: 10.1109/HONET.2013.6729792
  • [9] U. Sahin, S. Uguz, H. Akin, Int. J. Bifurcation Chaos 25, 1550011 (2015), doi: 10.1142/S021812741550011X
  • [10] U. Sahin, S. Uguz, H. Akin, I. Siap, Appl. Math. Model. 39, 2003 (2015), doi: 10.1016/j.apm.2014.10.025
  • [11] U. Sahin, S. Uguz, F. Sahin, Comput. Electr. Eng. 40, 59 (2014), doi: 10.1016/j.compeleceng.2013.11.010
  • [12] I. Siap, H. Akın, S. Uguz, Comput. Math. Applic. 62, 4161 (2011), doi: 10.1016/j.camwa.2011.09.066
  • [13] I. Siap, H. Akın, F. Sah, J. Frank. Inst. 348, 1258 (2011), doi: 10.1016/j.jfranklin.2010.02.002
  • [14] I. Siap, H. Akın, F. Sah, Infor. Sciences 180, 3562 (2010), doi: 10.1016/j.ins.2010.05.039
  • [15] S. Uguz, H. Akın, I. Siap, Intern. J. Bifur. Chaos 23, 1350101 (2013), doi: 10.1142/S0218127413501010
  • [16] S. Uguz, U. Sahin, H. Akın, I. Siap, Intern. J. Bifur. Chaos 24, 1430002 (2014), doi: 10.1142/S021812741430002X
  • [17] S. Uguz, U. Sahin, H. Akın, I. Siap, Acta Phys. Pol. A 125, 435 (2014), doi: 10.12693/APhysPolA.125.435
  • [18] S. Uguz, U. Sahin, F. Sahin, Comput. Electr. Eng. 43, 180 (2015), doi: 10.1016/j.compeleceng.2015.01.017
  • [19] S. Uguz, H. Akin, I. Siap, U. Sahin, Appl. Math. Model. 40, 8017 (2016), doi: 10.1016/j.apm.2016.04.027
  • [20] P. Chattopdhyay, P.P. Choudhury, K. Dihidar, Comput. Math. App. 38, 207 (1999), doi: 10.1016/S0898-1221(99)00227-8
  • [21] H. Akın, I. Siap, S. Uguz, AIP Conf. Proceed. 1309, 16 (2010), doi: 10.1063/1.3525111
  • [22] P.P. Choudhury, S. Sahoo, S.S. Hassan, S. Basu, D. Ghosh, D. Kar, Ab. Ghosh, Av. Ghosh, A.K. Ghosh, Int. J. Comp. Cogn. 8, 50 (2010)
  • [23] H.H. Chou, J.A. Reggia, Phys. D 110, 252 (1997), doi: 10.1016/S0167-2789(97)00132-2
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv131n328kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.