Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 3 | 362-365

Article title

Effects of the Wind Speed and the Material Emplacement on the Output Signal of PZT Piezoelectric Energy Harvester

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this study the electrical signal produced from wind energy through a (Pb_{x}X_{1-x})(Zr_{y}Ti_{z}Y_{1-y-z}) piezoelectric transducer is analyzed. The material is placed onto a metal frame at different positions and voltage outputs of each are compared at different wind flow speeds and load resistance values. The absorption of the wind energy is tested by connecting a polyurethane material in parallel and perpendicular to the wind flow direction. The use of that material with optimum emplacement condition is shown to increase the voltage output by at least two orders of magnitude, where the maximum voltage output obtained is 13 V, and the maximum power is 338 μW.

Keywords

EN

Contributors

author
  • Karabuk University, Electronics Technology Department, 78050, Karabuk, Turkey
author
  • Karabuk University, Faculty of Technology, Mechatronics Engineering Department, 78050, Karabuk, Turkey
  • Karabuk University, Thin Film Coatings Laboratory, Materials Research and Development Center (MARGEM), 78050, Karabuk, Turkey

References

  • [1] E. Önal, R.Z. Yarbay, İstanbul Commerce Univ. J. Sci. 9, 77 (2010)
  • [2] H.N. Bayraç, J. Economy Soci. 1, 37 (2011)
  • [3] M. Umeda, K. Nakamura, S. Ueha, Japan. J. Appl. Phys. 35, 3267 (1996), doi: 10.1143/JJAP.35.3267
  • [4] A. Şabanoviç, G. Çevik, M.F. Akşit, in 10th Int. Conf. Sustainable Energy Technologies 4-7 Sep., (2011)
  • [5] S. Priya, Appl. Phys. Lett. 87, 184101 (2005), doi: 10.1063/1.2119410
  • [6] S. Priya, C. Chen, D. Fye, J. Zahnd, Japan. J. Appl. Phys. 44, L104 (2005), doi: 10.1143/JJAP.44.L104
  • [7] G. Taylor, J. Burns, S.M. Kamman, W.B. Powers, T.R. Welsh, IEEE J. Oceanic Eng. 26, 539 (2001), doi: 10.1109/48.972090
  • [8] J.J. Allen, A.J. Smits, J. Fluids Struct. 15, 629 (2001), doi: 10.1006/jfls.2000.0355
  • [9] H. Liu, S. Zhang, R. Kathiresan, T. Kobayashi, C. Lee, Appl. Phys. Lett. 100, 223905 (2012), doi: 10.1063/1.4723846
  • [10] X. Gao, W.H. Shih, W.Y. Shih, IEEE Trans. Ind. Electron. 60, 1116 (2013), doi: 10.1109/TIE.2012.2187413
  • [11] S. Li, J. Yuan, H. Lipson, J. Appl. Phys. 109, 026104, (2011), doi: 10.1063/1.3525045
  • [12] S. Li, X. Shaanxi, H. Libson, Proc. ASME 2009 Conf. Smart Materials, Adaptive Structures and Intelligent Systems 1276, 611 (2009), doi: 10.1115/SMASIS2009-1276
  • [13] S.N. Yun, Y.B. Ham, J.H. Park, Iccas-Sıce Aug, 5514 (2009)
  • [14] C. Luo, H.F. Hofmann, Energy Conversion Congress and Exposition (ECCE), IEEE, 2010, p. 4171, doi: 10.1109/ECCE.2010.5617727
  • [15] Y.K. Tan, S.K. Panda, 33rd Ann. Conf. IEEE Industrial Electronics Society (IECON), IEEE, 2007, p. 9, doi: 10.1109/IECON.2007.4460120

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv131n310kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.