Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
Basing on the analytical mechanics methods, the Lagrangian equations of thin elastic rod is constructed. The definition of conformal invariance for the Lagrange mechanics of elastic rod is given. The criterions that conformal invariance of elastic rod is the Lie symmetry are obtained based on the Lie point transformation group. The structure equation and conserved quantity deduced from conformal invariance of elastic rod are constructed. Take twist rod as an example to illustrate the application of the results got in this paper.
Journal
Year
Volume
Issue
Pages
283-287
Physical description
Dates
published
2017-02
received
2016-11-01
Contributors
author
- School of Civil Engineering and Architecture, University of Jinan, Jinan, Shangdong, 250022, P.R. China
author
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P.R. China
author
- Department of Physics, Shaoxing University, Shaoxing, Zhejiang, 312000, P.R. China
References
- [1] F. Mei, Symmetries and Conserved Quantities of Constrained Mechanical Systems, Beijing Institute of Technology Press, Beijing 2004 (in Chinese)
- [2] R. de Ritis, G. Marmo, G. Platania, C. Rubano, P. Scudellaro, C. Stornaiolo, Phys. Rev. D 42, 1091 (1990), doi: 10.1103/PhysRevD.42.1091
- [3] V. Dorodnitsyn, Appl. Num. Math. 39, 307 (2001), doi: 10.1016/S0168-9274(00)00041-6
- [4] D. Levi, P. Winternitz, J. Phys. A Math. Gen. 39, 1 (2006), doi: 10.1088/0305-4470/39/2/R01
- [5] P. Wang, Nonlin. Dyn. 68, 53 (2012), doi: 10.1007/s11071-011-0203-3
- [6] P. Wang, H.J. Zhu, Acta Phys. Pol. A 119, 298 (2011), doi: 10.12693/APhysPolA.119.298
- [7] Z.X. Long, Y. Zhang, Acta Mech. 225, 77 (2013), doi: 10.1007/s00707-013-0956-5
- [8] M. Lutzky, Int. J. Non-Lin. Mech. 34, 387 (1999), doi: 10.1016/S0020-7462(98)00024-9
- [9] F.X. Mei, Acta Mech. 141, 135 (2000), doi: 10.1007/BF01268673
- [10] F.X. Mei, Chin. Phys. 10, 177 (2001), doi: 10.1088/1009-1963/10/3/301
- [11] J.H. Fang, Chin. Phys. B 19, 040301 (2010), doi: 10.1088/1674-1056/19/4/040301
- [12] L.Q. Jia, X.X. Wang, M.L. Zhang, Y.L. Han, Nonlin. Dyn. 69, 1807 (2012), doi: 10.1007/s11071-012-0387-1
- [13] S.K. Luo, Z.J. Li, W. Peng, L. Li, Acta Mech. 224, 71 (2013), doi: 10.1007/s00707-012-0733-x
- [14] S.K. Luo, Y.L. Xu, Int. J. Theor. Phys. 54, 572 (2015), doi: 10.1007/s10773-014-2249-8
- [15] S.K. Luo, Z.J. Li, L. Li, Acta Mech. 223, 2621 (2012), doi: 10.1007/s00707-012-0729-6
- [16] F.X. Mei, H.B. Wu, Y.F. Zhang, Int. J. Dyn. Control. 2, 285 (2014), doi: 10.1007/s40435-013-0043-8
- [17] Z.M. Lou, Acta Phys. Sin. 62, 220201 (2013) (in Chinese), doi: 10.7498/aps.62.220201
- [18] C.J. Song, Y. Zhang, Int. J. Theor. Phys. 54, 2481 (2015), doi: 10.1007/s10773-014-2475-0
- [19] A.S. Galiullin, G.G. Gafarov, R.P. Malaishka, A.M. Khwan, Analytical Dynamics of Helmholtz, Birkhoff and Nambu Systems, UFN, Moscow 1997
- [20] F.X. Mei, J.F. Xie, T.Q. Gang, Acta Mech. Sin. 24, 583 (2008), doi: 10.1007/s10409-008-0176-8
- [21] C. Liu, F.X. Mei, Y.X. Guo, Acta Phys. Sin. 57, 6704 (2008) (in Chinese), doi: 10.7498/aps.63.140201
- [22] X.W. Chen, Y.M. Li, Y.H. Zhao, Chin. Phys. B 18, 3139 (2009), doi: 10.1088/1674-1056/18/8/007
- [23] Y.P. Luo, J.L. Fu, Chin. Phys. B 19, 090303 (2010), doi: 10.1088/1674-1056/19/9/090303
- [24] J.L. Cai, Int. J. Theor. Phys. 49, 201 (2010), doi: 10.1007/s10773-009-0193-9
- [25] J.L. Cai, Nonlin. Dyn. 69, 487 (2012), doi: 10.1007/s11071-011-0279-9
- [26] Y.Y. Zhang, F. Zhang, Y.L. Han, L.Q. Jia, Nonlin. Dyn. 77, 521 (2014), doi: 10.1007/s11071-014-1314-4
- [27] E.E. Zajac, Trans. ASME J. Appl. Mech. 29, 136 (1962), doi: 10.1115/1.3636445
- [28] G.H.M. Van der Heijden, Proc. R. Soc. Lond. A 457, 695 (2001), doi: 10.1098/rspa.2000.0688
- [29] C.J. Benham, Proc. Natl. Acad. Sci. USA 74, 2937 (1977), doi: 10.1073/pnas.74.6.2397
- [30] Y.Z. Liu, Nonlinear Mechanics of Thin Elastic Rod-Theoretical Basis of Mechanical Model of DNA, Tsinghua Press and Springer, Beijing 2006 (in Chinese)
- [31] Y.M. Shi, J.E. Hearst, J. Chem. Phys. 101, 5186 (1994), doi: 10.1063/1.468506
- [32] R.S. Manning, K.A. Rogers, J.H. Maddocks, Proc. R. Soc. Lond. A 454, 3047 (1998), doi: 10.1098/rspa.1998.0291
- [33] A. Goriely, M. Tabor, Phys. Rev. Lett. 77, 3537 (1996), doi: 10.1103/PhysRevLett.77.3537
- [34] I. Tobias, D. Swigon, B.D. Coleman, Phys. Rev. E 61, 747 (2000), doi: 10.1103/PhysRevE.61.747
- [35] Y. Xue, Y.Z. Liu, Acta Phys. Sin. 5, 6737 (2009) (in Chinese), doi: 10.3321/j.issn:1000-3290.2009.10.012
- [36] Y.Z. Liu, Y. Xue, Appl. Math. Mech. Engl. Ed. 32, 603 (2011), doi: 10.1007/s10483-011-1442-8
- [37] B.D. Coleman, E.H. Dill, D. Swigon, Archiv. Ration. Mechan. Anal. 129, 147 (1995), doi: 10.1007/BF00379919
- [38] J.H. Maddocks, D.J. Dichmann, J. Elastic. 34, 83 (1994), doi: 10.1007/BF00042427
- [39] J.L. Fu, W.J. Zhao, Y.Q. Weng, Chin. Phys. 17, 2361 (2008), doi: 10.1088/1674-1056/17/7/007
- [40] P. Jung, S. Leyendecker, J. Linn, M. Ortiz, Int. J. Num. Meth. Eng. 85, 31 (2011), doi: 10.1002/nme.2950
- [41] Y. Xue, P. Wang, Acta Phys. Sin. 60, 114501 (2011) (in Chinese), doi: 10.7498/aps.60.114501
- [42] P. Wang, Y. Xue, Y.L. Liu, Chin. Phys. B 21, 070203 (2012), doi: 10.1088/1674-1056/21/7/070203
- [43] P. Wang, Y. Xue, Y.L. Liu, Chin. Phys. B 22, 104503 (2013), doi: 10.1088/1674-1056/22/10/104503
- [44] P. Wang, Y. Xue, Nonlin. Dyn. 83, 1815 (2016), doi: 10.1007/s11071-015-2448-8
- [45] Y. Xue, Y.Z. Liu, L.Q. Chen, Chin. J. Theor. Appl. Mech. 37, 485 (2005) (in Chinese), doi: 10.3321/j.issn:0459-1879.2005.04.014
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv131n214kz