PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 2 | 283-287
Article title

Conformal Invariance and Conserved Quantities for Lagrange Equation of Thin Elastic Rod

Content
Title variants
Languages of publication
EN
Abstracts
EN
Basing on the analytical mechanics methods, the Lagrangian equations of thin elastic rod is constructed. The definition of conformal invariance for the Lagrange mechanics of elastic rod is given. The criterions that conformal invariance of elastic rod is the Lie symmetry are obtained based on the Lie point transformation group. The structure equation and conserved quantity deduced from conformal invariance of elastic rod are constructed. Take twist rod as an example to illustrate the application of the results got in this paper.
Year
Volume
131
Issue
2
Pages
283-287
Physical description
Dates
published
2017-02
received
2016-11-01
References
  • [1] F. Mei, Symmetries and Conserved Quantities of Constrained Mechanical Systems, Beijing Institute of Technology Press, Beijing 2004 (in Chinese)
  • [2] R. de Ritis, G. Marmo, G. Platania, C. Rubano, P. Scudellaro, C. Stornaiolo, Phys. Rev. D 42, 1091 (1990), doi: 10.1103/PhysRevD.42.1091
  • [3] V. Dorodnitsyn, Appl. Num. Math. 39, 307 (2001), doi: 10.1016/S0168-9274(00)00041-6
  • [4] D. Levi, P. Winternitz, J. Phys. A Math. Gen. 39, 1 (2006), doi: 10.1088/0305-4470/39/2/R01
  • [5] P. Wang, Nonlin. Dyn. 68, 53 (2012), doi: 10.1007/s11071-011-0203-3
  • [6] P. Wang, H.J. Zhu, Acta Phys. Pol. A 119, 298 (2011), doi: 10.12693/APhysPolA.119.298
  • [7] Z.X. Long, Y. Zhang, Acta Mech. 225, 77 (2013), doi: 10.1007/s00707-013-0956-5
  • [8] M. Lutzky, Int. J. Non-Lin. Mech. 34, 387 (1999), doi: 10.1016/S0020-7462(98)00024-9
  • [9] F.X. Mei, Acta Mech. 141, 135 (2000), doi: 10.1007/BF01268673
  • [10] F.X. Mei, Chin. Phys. 10, 177 (2001), doi: 10.1088/1009-1963/10/3/301
  • [11] J.H. Fang, Chin. Phys. B 19, 040301 (2010), doi: 10.1088/1674-1056/19/4/040301
  • [12] L.Q. Jia, X.X. Wang, M.L. Zhang, Y.L. Han, Nonlin. Dyn. 69, 1807 (2012), doi: 10.1007/s11071-012-0387-1
  • [13] S.K. Luo, Z.J. Li, W. Peng, L. Li, Acta Mech. 224, 71 (2013), doi: 10.1007/s00707-012-0733-x
  • [14] S.K. Luo, Y.L. Xu, Int. J. Theor. Phys. 54, 572 (2015), doi: 10.1007/s10773-014-2249-8
  • [15] S.K. Luo, Z.J. Li, L. Li, Acta Mech. 223, 2621 (2012), doi: 10.1007/s00707-012-0729-6
  • [16] F.X. Mei, H.B. Wu, Y.F. Zhang, Int. J. Dyn. Control. 2, 285 (2014), doi: 10.1007/s40435-013-0043-8
  • [17] Z.M. Lou, Acta Phys. Sin. 62, 220201 (2013) (in Chinese), doi: 10.7498/aps.62.220201
  • [18] C.J. Song, Y. Zhang, Int. J. Theor. Phys. 54, 2481 (2015), doi: 10.1007/s10773-014-2475-0
  • [19] A.S. Galiullin, G.G. Gafarov, R.P. Malaishka, A.M. Khwan, Analytical Dynamics of Helmholtz, Birkhoff and Nambu Systems, UFN, Moscow 1997
  • [20] F.X. Mei, J.F. Xie, T.Q. Gang, Acta Mech. Sin. 24, 583 (2008), doi: 10.1007/s10409-008-0176-8
  • [21] C. Liu, F.X. Mei, Y.X. Guo, Acta Phys. Sin. 57, 6704 (2008) (in Chinese), doi: 10.7498/aps.63.140201
  • [22] X.W. Chen, Y.M. Li, Y.H. Zhao, Chin. Phys. B 18, 3139 (2009), doi: 10.1088/1674-1056/18/8/007
  • [23] Y.P. Luo, J.L. Fu, Chin. Phys. B 19, 090303 (2010), doi: 10.1088/1674-1056/19/9/090303
  • [24] J.L. Cai, Int. J. Theor. Phys. 49, 201 (2010), doi: 10.1007/s10773-009-0193-9
  • [25] J.L. Cai, Nonlin. Dyn. 69, 487 (2012), doi: 10.1007/s11071-011-0279-9
  • [26] Y.Y. Zhang, F. Zhang, Y.L. Han, L.Q. Jia, Nonlin. Dyn. 77, 521 (2014), doi: 10.1007/s11071-014-1314-4
  • [27] E.E. Zajac, Trans. ASME J. Appl. Mech. 29, 136 (1962), doi: 10.1115/1.3636445
  • [28] G.H.M. Van der Heijden, Proc. R. Soc. Lond. A 457, 695 (2001), doi: 10.1098/rspa.2000.0688
  • [29] C.J. Benham, Proc. Natl. Acad. Sci. USA 74, 2937 (1977), doi: 10.1073/pnas.74.6.2397
  • [30] Y.Z. Liu, Nonlinear Mechanics of Thin Elastic Rod-Theoretical Basis of Mechanical Model of DNA, Tsinghua Press and Springer, Beijing 2006 (in Chinese)
  • [31] Y.M. Shi, J.E. Hearst, J. Chem. Phys. 101, 5186 (1994), doi: 10.1063/1.468506
  • [32] R.S. Manning, K.A. Rogers, J.H. Maddocks, Proc. R. Soc. Lond. A 454, 3047 (1998), doi: 10.1098/rspa.1998.0291
  • [33] A. Goriely, M. Tabor, Phys. Rev. Lett. 77, 3537 (1996), doi: 10.1103/PhysRevLett.77.3537
  • [34] I. Tobias, D. Swigon, B.D. Coleman, Phys. Rev. E 61, 747 (2000), doi: 10.1103/PhysRevE.61.747
  • [35] Y. Xue, Y.Z. Liu, Acta Phys. Sin. 5, 6737 (2009) (in Chinese), doi: 10.3321/j.issn:1000-3290.2009.10.012
  • [36] Y.Z. Liu, Y. Xue, Appl. Math. Mech. Engl. Ed. 32, 603 (2011), doi: 10.1007/s10483-011-1442-8
  • [37] B.D. Coleman, E.H. Dill, D. Swigon, Archiv. Ration. Mechan. Anal. 129, 147 (1995), doi: 10.1007/BF00379919
  • [38] J.H. Maddocks, D.J. Dichmann, J. Elastic. 34, 83 (1994), doi: 10.1007/BF00042427
  • [39] J.L. Fu, W.J. Zhao, Y.Q. Weng, Chin. Phys. 17, 2361 (2008), doi: 10.1088/1674-1056/17/7/007
  • [40] P. Jung, S. Leyendecker, J. Linn, M. Ortiz, Int. J. Num. Meth. Eng. 85, 31 (2011), doi: 10.1002/nme.2950
  • [41] Y. Xue, P. Wang, Acta Phys. Sin. 60, 114501 (2011) (in Chinese), doi: 10.7498/aps.60.114501
  • [42] P. Wang, Y. Xue, Y.L. Liu, Chin. Phys. B 21, 070203 (2012), doi: 10.1088/1674-1056/21/7/070203
  • [43] P. Wang, Y. Xue, Y.L. Liu, Chin. Phys. B 22, 104503 (2013), doi: 10.1088/1674-1056/22/10/104503
  • [44] P. Wang, Y. Xue, Nonlin. Dyn. 83, 1815 (2016), doi: 10.1007/s11071-015-2448-8
  • [45] Y. Xue, Y.Z. Liu, L.Q. Chen, Chin. J. Theor. Appl. Mech. 37, 485 (2005) (in Chinese), doi: 10.3321/j.issn:0459-1879.2005.04.014
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv131n214kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.