Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 2 | 275-282

Article title

Dynamics of Shallow Water Waves with Various Boussinesq Equations

Content

Title variants

Languages of publication

EN

Abstracts

EN
Attempt has been made to construct the solitary waves and shock wave solutions or domain walls (in higher dimension) for various Boussinesq equations. The method of undetermined coefficients have been used to explore the exact analytical solitary waves and shock wave solutions in terms of bell-shaped sech^p function and kink-shaped tanh^p function for the considered equations. The Boussinesq equation in the (1+1)-dimensional, the (2+1)-dimensional and the (3+1)-dimensional equations are studied and the parametric constraint conditions and uniqueness in view of both solitary waves and shock wave solutions are determined. Such solutions can be valuable and desirable for explaining some nonlinear physical phenomena in nonlinear science described by the Boussinesq equations. The effect of the varying parameters on the development of solitary waves and shock wave solutions have been demonstrated by direct numerical simulation technique.

Year

Volume

131

Issue

2

Pages

275-282

Physical description

Dates

published
2017-02
received
2016-09-18
(unknown)
2017-01-16

Contributors

author
  • Department of Physics, Dr. B.R. Ambedkar Institute of Technology, Port Blair-744103, India
author
  • Department of Physics, Chaudhary Bansi Lal University, Bhiwani-127021, India
  • Department of Physics, Indus Degree College, Jind-126102, India
author
  • Department of Physics, Kurukshetra University, Kurukshetra-136119, India

References

  • [1] L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers, Birkhauser, Boston 1997, doi: 10.1007/978-1-4899-2846-7
  • [2] M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform, Cambridge Univ. Press, Cambridge 1990
  • [3] E.G. Fan, Phys. Lett. A 277, 212 (2000), doi: 10.1016/S0375-9601(00)00725-8
  • [4] H. Kumar, F. Chand, AIP Adv. 3, 032128 (2013), doi: 10.1063/1.4795854
  • [5] A.J. Mohamad Jawad, M.D. Petkovic, P. Laketa, A. Biswas, Sci. Iran. Trans. B Mech. Eng. 20, 179 (2013), doi: 10.1016/j.scient.2012.12.011
  • [6] H. Kumar, A. Malik, F. Chand, S.C. Mishra, Indian J. Phys. 86, 819 (2012), doi: 10.1007/s12648-012-0126-y
  • [7] H. Kumar, F. Chand, J. Theor. Appl. Phys. 8, 114 (2014), doi: 10.1007/s40094-014-0114-z
  • [8] E.M. Zayed, J. Phys. A Math. Theor. 42, 195202 (2009), doi: 10.1088/1751-8113/42/19/195202
  • [9] A. Malik, F. Chand, H. Kumar, S.C. Mishra, Pramana J. Phys. 78, 513 (2012), doi: 10.1007/s12043-011-0253-6
  • [10] H. Kumar, A. Malik, F. Chand, J. Math. Phys. 53, 103704 (2012), doi: 10.1063/1.4754433
  • [11] A.J.M. Jawad, M.D. Petkovic, A. Biswas, Iran. J. Sci. Tech. Trans. A 37, 109 (2013) http://ijsts.shirazu.ac.ir/article_1500_b1de5bfa94c97202cecf6de98fec73a4.pdf
  • [12] A. Biswas, M.S. Ismail, Appl. Math. Comput. 216, 3662 (2010), doi: 10.1016/j.amc.2010.05.017
  • [13] A.J.M. Jawad, M. Mirzazadeh, A. Biswas, Discrete Cont. Dyn. Syst. Ser. S 8, 1155 (2015), doi: 10.3934/dcdss.2015.8.1155
  • [14] S. El-Ganaini, M. Mirzazadeh, A. Biswas, Appl. Comput. Math. 14, 248 (2015)
  • [15] G. Ebadi, N. Yousefzadeh, H. Triki, A. Yildirim, A. Biswas, Romanian Rep. Phys. 64, 915 (2012)
  • [16] H. Kumar, F. Chand, Optik {125, 2938 (2014), doi: 10.1016/j.ijleo.2013.12.072
  • [17] H. Kumar, F. Chand, Opt. Laser Tech. 54, 265 (2013), doi: 10.1016/j.optlastec.2013.05.031
  • [18] E.V. Krishnan, S. Kumar, A. Biswas, Nonlin. Dyn. 70, 1213 (2012), doi: 10.1007/s11071-012-0525-9
  • [19] A.M. Wazwaz, Appl. Math. Comput. 217, 2277 (2010), doi: 10.1016/j.amc.2010.06.038
  • [20] H. Kumar, F. Chand, Indian J. Phys. 87, 909 (2013), doi: 10.1007/s12648-013-0310-8
  • [21] H. Triki, A.H. Kara, A. Biswas, Indian J. Phys. 88, 751 (2014), doi: 10.1007/s12648-014-0466-x
  • [22] H. Triki, A.H. Kara, A. Bhrawy, A. Biswas, Acta Phys. Pol. A 125, 1099 (2014), doi: 10.12693/APhysPolA.125.1099
  • [23] H. Kumar, A. Malik, F. Chand, Pramana J. Phys. 80, 361 (2013), doi: 10.1007/s12043-012-0467-2
  • [24] H. Kumar, F. Chand, J. Nonlin. Opt. Phys. Mater. 22, 1350001 (2013), doi: 10.1142/S021886351350001X
  • [25] A. Biswas, Appl. Math. Lett. 22, 1775 (2009), doi: 10.1016/j.aml.2009.06.015
  • [26] A.M. Wazwaz, H. Triki, Commun. Nonlin. Sci. Num. Simul. 16, 1122 (2011), doi: 10.1016/j.cnsns.2010.06.024
  • [27] A. Biswas, Phys. Lett. A{372, 4601 (2008), doi: 10.1016/j.physleta.2008.05.002
  • [28] M. Chen, Appl. Math. Lett. 11, 45 (1998), doi: 10.1016/S0893-9659(98)00078-0
  • [29] R.S. Johnson, J. Fluid Mech. 323, 65 (1996), doi: 10.1017/S0022112096000845
  • [30] J. Zhang, X. Lai, J. Phys. Soc. Jpn. 75, 2402 (2004), doi: 10.1143/JPSJ.73.2402
  • [31] W. Yong, Chin. Phys. Lett. 25, 2739 (2008), doi: 10.1088/0256-307X/25/8/002
  • [32] G. Ebadi, S. Johnson, E. Zerrad, A. Biswas, J. King Saud Univ. Sci. 24, 237 (2012), doi: 10.1016/j.jksus.2011.05.001
  • [33] H. Triki, A. Chowdhury, A. Biswas, Univ. Pol. Bucharest Sci. Bull. Ser. A 75, 39 (2013)
  • [34] R. Abazari, S. Jamshidzadeh, A. Biswas, Complexity 21, 151 (2016), doi: 10.1002/cplx.21793
  • [35] S.O. Adesanya, M. Mirzazadeh, M. Eslami, A. Biswas, J. Comput. Theor. Nanosci. 13, 4739 (2016), doi: 10.1166/jctn.2016.5347
  • [36] Y. Chen, Z.Y. Yan, H.Q. Zhang, Phys. Lett. A 307, 107 (2003), doi: 10.1016/S0375-9601(02)01668-7
  • [37] F. Tascan, A. Bekir, Appl. Math. Comput. 215, 3134 (2009), doi: 10.1016/j.amc.2009.09.027

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv131n213kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.