PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 2 | 275-282
Article title

Dynamics of Shallow Water Waves with Various Boussinesq Equations

Content
Title variants
Languages of publication
EN
Abstracts
EN
Attempt has been made to construct the solitary waves and shock wave solutions or domain walls (in higher dimension) for various Boussinesq equations. The method of undetermined coefficients have been used to explore the exact analytical solitary waves and shock wave solutions in terms of bell-shaped sech^p function and kink-shaped tanh^p function for the considered equations. The Boussinesq equation in the (1+1)-dimensional, the (2+1)-dimensional and the (3+1)-dimensional equations are studied and the parametric constraint conditions and uniqueness in view of both solitary waves and shock wave solutions are determined. Such solutions can be valuable and desirable for explaining some nonlinear physical phenomena in nonlinear science described by the Boussinesq equations. The effect of the varying parameters on the development of solitary waves and shock wave solutions have been demonstrated by direct numerical simulation technique.
Year
Volume
131
Issue
2
Pages
275-282
Physical description
Dates
published
2017-02
received
2016-09-18
(unknown)
2017-01-16
References
  • [1] L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers, Birkhauser, Boston 1997, doi: 10.1007/978-1-4899-2846-7
  • [2] M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform, Cambridge Univ. Press, Cambridge 1990
  • [3] E.G. Fan, Phys. Lett. A 277, 212 (2000), doi: 10.1016/S0375-9601(00)00725-8
  • [4] H. Kumar, F. Chand, AIP Adv. 3, 032128 (2013), doi: 10.1063/1.4795854
  • [5] A.J. Mohamad Jawad, M.D. Petkovic, P. Laketa, A. Biswas, Sci. Iran. Trans. B Mech. Eng. 20, 179 (2013), doi: 10.1016/j.scient.2012.12.011
  • [6] H. Kumar, A. Malik, F. Chand, S.C. Mishra, Indian J. Phys. 86, 819 (2012), doi: 10.1007/s12648-012-0126-y
  • [7] H. Kumar, F. Chand, J. Theor. Appl. Phys. 8, 114 (2014), doi: 10.1007/s40094-014-0114-z
  • [8] E.M. Zayed, J. Phys. A Math. Theor. 42, 195202 (2009), doi: 10.1088/1751-8113/42/19/195202
  • [9] A. Malik, F. Chand, H. Kumar, S.C. Mishra, Pramana J. Phys. 78, 513 (2012), doi: 10.1007/s12043-011-0253-6
  • [10] H. Kumar, A. Malik, F. Chand, J. Math. Phys. 53, 103704 (2012), doi: 10.1063/1.4754433
  • [11] A.J.M. Jawad, M.D. Petkovic, A. Biswas, Iran. J. Sci. Tech. Trans. A 37, 109 (2013) http://ijsts.shirazu.ac.ir/article_1500_b1de5bfa94c97202cecf6de98fec73a4.pdf
  • [12] A. Biswas, M.S. Ismail, Appl. Math. Comput. 216, 3662 (2010), doi: 10.1016/j.amc.2010.05.017
  • [13] A.J.M. Jawad, M. Mirzazadeh, A. Biswas, Discrete Cont. Dyn. Syst. Ser. S 8, 1155 (2015), doi: 10.3934/dcdss.2015.8.1155
  • [14] S. El-Ganaini, M. Mirzazadeh, A. Biswas, Appl. Comput. Math. 14, 248 (2015)
  • [15] G. Ebadi, N. Yousefzadeh, H. Triki, A. Yildirim, A. Biswas, Romanian Rep. Phys. 64, 915 (2012)
  • [16] H. Kumar, F. Chand, Optik {125, 2938 (2014), doi: 10.1016/j.ijleo.2013.12.072
  • [17] H. Kumar, F. Chand, Opt. Laser Tech. 54, 265 (2013), doi: 10.1016/j.optlastec.2013.05.031
  • [18] E.V. Krishnan, S. Kumar, A. Biswas, Nonlin. Dyn. 70, 1213 (2012), doi: 10.1007/s11071-012-0525-9
  • [19] A.M. Wazwaz, Appl. Math. Comput. 217, 2277 (2010), doi: 10.1016/j.amc.2010.06.038
  • [20] H. Kumar, F. Chand, Indian J. Phys. 87, 909 (2013), doi: 10.1007/s12648-013-0310-8
  • [21] H. Triki, A.H. Kara, A. Biswas, Indian J. Phys. 88, 751 (2014), doi: 10.1007/s12648-014-0466-x
  • [22] H. Triki, A.H. Kara, A. Bhrawy, A. Biswas, Acta Phys. Pol. A 125, 1099 (2014), doi: 10.12693/APhysPolA.125.1099
  • [23] H. Kumar, A. Malik, F. Chand, Pramana J. Phys. 80, 361 (2013), doi: 10.1007/s12043-012-0467-2
  • [24] H. Kumar, F. Chand, J. Nonlin. Opt. Phys. Mater. 22, 1350001 (2013), doi: 10.1142/S021886351350001X
  • [25] A. Biswas, Appl. Math. Lett. 22, 1775 (2009), doi: 10.1016/j.aml.2009.06.015
  • [26] A.M. Wazwaz, H. Triki, Commun. Nonlin. Sci. Num. Simul. 16, 1122 (2011), doi: 10.1016/j.cnsns.2010.06.024
  • [27] A. Biswas, Phys. Lett. A{372, 4601 (2008), doi: 10.1016/j.physleta.2008.05.002
  • [28] M. Chen, Appl. Math. Lett. 11, 45 (1998), doi: 10.1016/S0893-9659(98)00078-0
  • [29] R.S. Johnson, J. Fluid Mech. 323, 65 (1996), doi: 10.1017/S0022112096000845
  • [30] J. Zhang, X. Lai, J. Phys. Soc. Jpn. 75, 2402 (2004), doi: 10.1143/JPSJ.73.2402
  • [31] W. Yong, Chin. Phys. Lett. 25, 2739 (2008), doi: 10.1088/0256-307X/25/8/002
  • [32] G. Ebadi, S. Johnson, E. Zerrad, A. Biswas, J. King Saud Univ. Sci. 24, 237 (2012), doi: 10.1016/j.jksus.2011.05.001
  • [33] H. Triki, A. Chowdhury, A. Biswas, Univ. Pol. Bucharest Sci. Bull. Ser. A 75, 39 (2013)
  • [34] R. Abazari, S. Jamshidzadeh, A. Biswas, Complexity 21, 151 (2016), doi: 10.1002/cplx.21793
  • [35] S.O. Adesanya, M. Mirzazadeh, M. Eslami, A. Biswas, J. Comput. Theor. Nanosci. 13, 4739 (2016), doi: 10.1166/jctn.2016.5347
  • [36] Y. Chen, Z.Y. Yan, H.Q. Zhang, Phys. Lett. A 307, 107 (2003), doi: 10.1016/S0375-9601(02)01668-7
  • [37] F. Tascan, A. Bekir, Appl. Math. Comput. 215, 3134 (2009), doi: 10.1016/j.amc.2009.09.027
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv131n213kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.