PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 2 | 226-231
Article title

Quantum Invariants Descending from the Joule-Lenz Law for the Dissipated Energy Applied in Calculating the Rate of Electron Transitions

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
The Joule-Lenz law for a classical expense of energy is transformed into a formula representing a quantum-mechanical invariant composed of the interval of energy connected with an electron transition and the corresponding interval of transition time between two quantum levels. Time and energy enter the invariant formula on an equal footing, moreover the time intervals converge with the time periods characteristic for the examined quantum systems. These properties imply to consider the time intervals as quanta of time having character similar to that possessed by the energy. Another result of the transformation of the Joule-Lenz law is the time rate of energy of the quantum transitions. This rate is calculated on a fully non-probabilistic way. When examined for the hydrogen atomic spectrum taken as an example, the obtained quantum rate is by many orders larger than a classical transition rate.
Keywords
EN
Contributors
author
  • Institute of Physical Chemistry, Polish Academy of Sciences, M. Kasprzaka 44/52, 01-224 Warsaw, Poland
References
  • [1] A. Sommerfeld, Atombau und Spektrallinien, Vol. 1, 5th ed., Braunschweig, 1931 (in German)
  • [2] P. Ehrenfest, Ann. Phys. 341, 91 (1911), doi: 10.1002/andp.19113411106
  • [2a] P. Ehrenfest, Phys. Zeitschr. 15, 657 (1914) http://lorentz.leidenuniv.nl/IL-publications/sources/Ehrenfest_14a.pdf
  • [2b] P. Ehrenfest, Ann. Phys. 356, 327 (1916), doi: 10.1002/andp.19163561905
  • [3] M. Born, P. Jordan, Zeitsch. Phys. 34, 858 (1925), doi: 10.1007/BF01328531
  • [4] H. Eyring, J. Walter, G.E. Kimball, Quantum Chemistry, Wiley, New York 1957
  • [5] A. Sommerfeld, Mechanik, Akademische Verlagsgesellschaft, Leipzig 1943 (in German)
  • [6] H. Lass, Vector and Tensor Analysis, McGraw-Hill, New York 1950
  • [7] A.N. Matveev, Electrodynamics and the Theory of Relativity, Izd. Wyzszaja Szkola, Moscow 1964 (in Russian)
  • [8] A.H. MacDonald, Quantum Hall Effect. A Perspective, Kluwer, Milano 1989
  • [9] S. Olszewski, J. Mod. Phys. 6, 1277 (2015), doi: 10.4236/jmp.2015.69133
  • [10] S. Olszewski, Quant. Matter 5, 664 (2016), doi: 10.1166/qm.2016.1360
  • [11] S. Olszewski, Rev. Theor. Sci. 4, 336 (2016), doi: 10.1166/rits.2016.1066
  • [12] S. Olszewski, J. Mod. Phys. 7, 162 (2016), doi: 10.4236/jmp.2016.71018
  • [13] H.G. Kuhn, Atomic Spectra, Academic Press, New York 1962
  • [14] S. Olszewski, J. Mod. Phys. 7, 827 (2016), doi: 10.4236/jmp.2016.78076
  • [15] S. Olszewski, J. Mod. Phys. 7, 1004 (2016), doi: 10.4236/jmp.2016.79091
  • [15a] S. Olszewski, J. Mod. Phys. 7, 2314 (2016), doi: 10.4236/jmp.2016.716199
  • [16] H. Bethe, 'Quantenmechanik der Ein- und Zwei-Elektronen Probleme', in: Handbuch der Physik, Eds. H. Geiger, K. Scheel, Vol. 24, Part 1, Springer, Berlin 1933 (in German)
  • [17] E.U. Condon, G.H. Shortley, The Theory of Atomic Spectra, Cambridge University Press, Cambridge UK 1970
  • [18] S. Olszewski, J. Mod. Phys. 7, 1440 (2016), doi: 10.4236/jmp.2016.712131
  • [19] S. Olszewski, J. Mod. Phys. 7, 1725 (2016), doi: 10.4236/jmp.2016.713155
  • [20] H.A. Kramers, W. Heisenberg, Zeits. Phys. 31, 681 (1925)
  • [21] W. Kuhn, Zeitsch. Phys. 33, 408 (1925), doi: 10.1007/BF01328322
  • [22] A. Einstein, Phys. Zeitsch. 18, 121 (1917) http://web.ihep.su/dbserv/compas/src/einstein17/eng.pdf
  • [23] B.L. Van der Waerden, Sources of Quantum Mechanics, Dover, New York 1968
  • [24] J.H. Van Vleck, Phys. Rev. 24, 330 (1924), doi: 10.1103/PhysRev.24.330
  • [25] M. Planck, Acht Vorlesungen ueber Theoretische Physik, S. Hirzel, Leipzig 1910 (in German)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv131n204kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.