Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 1 | 204-206
Article title

Electrochemical Performance of SnO₂ and SnO₂/MWCNT/Graphene Composite Anodes for Li-Ion Batteries

Title variants
Languages of publication
In this study, tin oxide (SnO₂) coatings on Cr coated stainless steel and multi-walled carbon nanotube (MWCNT)/graphene substrates were prepared using a radio frequency magnetron sputtering process as anode materials in lithium-ion batteries. SnO₂ thin film and SnO₂/MWCNT/graphene composite were characterized with field-emission scanning electron microscopy, X-ray diffraction, and electrochemical tests (cyclic voltammetry and galvanostatic cycling). The electrochemical properties of SnO₂ and SnO₂/MWCNT/graphene composite anodes were studied using 2016-type coin cells assembled in an argon-filled glove box. The cells were cyclically tested on a MTI BST8-MA battery analyzer. The cyclic voltammograms of SnO₂ anode and SnO₂/MWCNT/graphene composite anode were obtained over the potential range of 0.05-3.0 V and 0.05-2.5 V at a scan rate of 0.05 mV s¯¹, respectively.
  • Sakarya University, Engineering Faculty, Department of Metallurgical and Material Engineering, Esentepe Campus, 54187 Sakarya, Turkey
  • Sakarya University, Engineering Faculty, Department of Metallurgical and Material Engineering, Esentepe Campus, 54187 Sakarya, Turkey
  • [1] N. Mohri, B. Oschmann, N. Laszczynski, F. Mueller, J. Zamory, M.N. Tahir, S. Passerini, R. Zentel, W. Tremel, J. Mater. Chem. A 4, 612 (2016), doi: 10.1039/c5ta06546a
  • [2] H. Liu, Z. Hu, R. Hu, H. Ruan, Y. Su, L. Zhang, Int. J. Electrochem. Sci. 11, 3376 (2016), doi: 10.20964/11048
  • [3] J. Li, Y. Zhao, N. Wang, L. Guan, Chem. Commun. 47, 5238 (2011), doi: 10.1039/C1CC10542F
  • [4] N. Kheirabadi, A. Shafiekhani, J. Appl. Phys. 112, 124323 (2012), doi: 10.1063/1.4771923
  • [5] E.J. Yoo, J. Kim, E. Hosono, H.S. Zhou, T. Kudo, I. Honma, Nano Lett. 8, 2277 (2008), doi: 10.1021/nl800957b
  • [6] G. Wang, B. Wang, X. Wang, J. Park, S. Dou, H. Ahn, K. Kim, J. Mater. Chem. 19, 8378 (2009), doi: 10.1039/B914650D
  • [7] T. Cetinkaya, M. Tokur, S. Ozcan, M. Uysal, H. Akbulut, Int. J. Hydrogen Energy 41, 6945 (2016), doi: 10.1016/j.ijhydene.2015.12.092
  • [8] U. Tocoglu, M. Alaf, O. Cevher, M.O. Guler, H. Akbulut, J. Nanosci. Nanotechnol. 12, 9169 (2012), doi: 10.1166/jnn.2012.6751
  • [9] L. Zhao, L. Gao, Carbon 42, 1858 (2004), doi: 10.1016/j.carbon.2004.02.013
  • [10] L. Noerochim, J.Z. Wang, S.L. Chou, H.J. Li, H.K. Liu, Electrochim. Acta 56, 314 (2010), doi: 10.1016/j.electacta.2010.08.078
  • [11] J. Santos-Pena, T. Brousse, L. Sanchez, J. Morales, D.M. Schleich, J. Power Sourc. 97-98, 232 (2001), doi: 10.1016/S0378-7753(01)00620-6
  • [12] Y. Wang, T. Chen, Electrochim. Acta 54, 3510 (2009), doi: 10.1016/j.electacta.2008.11.039
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.