Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
The proposed particle factory detector for Turkish Accelerator Center (TAC-PF) being a regional facility in Turkey will operate at the center of mass energy about 3.77 GeV with designed luminosity of the order of 10³⁴ cm¯² s¯¹. The electromagnetic calorimeter part of the detector is considered to have PbWO₄ and CsI(Tl) crystals coupled with photodiodes. In this study, the exposed dose rate to electromagnetic calorimeter during PF detector operation was estimated by FLUKA Monte Carlo tool. The irradiation effects such as the change of light yield and light transmission of these crystals were investigated to evaluate TAC-PF electromagnetic calorimeter energy resolution.
Discipline
- 07.20.Fw: Calorimeters(for calorimeters as radiation detectors, see 29.40.Vj)
- 42.88.+h: Environmental and radiation effects on optical elements, devices, and systems
- 02.70.Uu: Applications of Monte Carlo methods(see also 02.50.Ng in probability theory, stochastic processes, and statistics, and 05.10.Ln in statistical physics)
Journal
Year
Volume
Issue
Pages
190-192
Physical description
Dates
published
2017-01
Contributors
author
- Uludag University, Department of Physics, 16059 Bursa, Turkey
author
- Uludag University, Department of Physics, 16059 Bursa, Turkey
author
- Uludag University, Department of Physics, 16059 Bursa, Turkey
author
- Uludag University, Department of Physics, 16059 Bursa, Turkey
author
- Uludag University, Department of Physics, 16059 Bursa, Turkey
References
- [1] I. Tapan, E. Pilicer, F.B. Pilicer, Nucl. Instrum. Methods Phys. Res. A 831, 389 (2016), doi: 10.1016/j.nima.2016.04.064
- [2] S. Korucuklu, et al., in: Proc. IPAC10, THPD059, (2010) http://accelconf.web.cern.ch/AccelConf/IPAC10/papers/thpd059.pdf
- [3] R.Y. Zhu, in: Handbook of Particle Detection, Ed. C. Grupen, Springer, Berlin 2012, p. 535, doi: 10.1007/978-3-642-13271-1
- [4] F. Kocak, Nucl. Instrum. Methods Phys. Res. A 787, 144 (2015), doi: 10.1016/j.nima.2014.11.077
- [5] Rihua Mao, Liyuan Zhang, Ren-Yuan Zhu, IEEE Trans. Nucl. Sci. 55, 2425 (2008), doi: 10.1109/TNS.2008.2000776
- [6] S. Agostinelli, et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003), doi: 10.1016/S0168-9002(03)01368-8
- [7] R.Y. Zhu, J. Phys. Conf. Series 160, 012017 (2009), doi: 10.1088/1742-6596/160/1/012017
- [8] W. Li, et al., in: Proc. CHEP, 2006, p. 225 http://indico.cern.ch/event/408139/contributions/979815/attachments/815741/1117758/CHEP06-Weidong_Li.pdf
- [9] A. Ferrari, P.R. Sala, A. Fasso, J. Ranft, FLUKA: a multi-particle transport code, CERN-2005-10, INFN/TC-05/11, SLAC-R-773, (2005), doi: 10.5170/CERN-2005-010
- [10] P.G. Ping, Chin. Phys. C 32, 599 (2008), doi: 10.1088/1674-1137/32/8/001
- [11] M. Ablikim and BESIII Collaboration, Nucl. Instrum. Methods Phys. Res. A 614, 345 (2010), doi: 10.1016/j.nima.2009.12.050
- [12] Rihua Mao, Liyuan Zhang, Ren-Yuan Zhu, IEEE Trans. Nucl. Sci. 59, 2229 (2012), doi: 10.1109/TNS.2012.2192290
- [13] A. Abashian and BELLE Collaboration, Nucl. Instrum. Methods Phys. Res. A 479, 117 (2002), doi: 10.1016/S0168-9002(01)02013-7
- [14] Rihua Mao, Liyuan Zhang, Ren-Yuan Zhu, IEEE Trans. Nucl. Sci. 59, 2224 (2012), doi: 10.1109/TNS.2012.2184302
- [15] E. Pilicer, F. Kocak, I. Tapan, Nucl. Instrum. Methods Phys. Res. A 552, 146 (2005), doi: 10.1016/j.nima.2005.06.021
- [16] R.W. Novotny, W. Doring, K. Mengel, V. Metag, C. Pienne, IEEE Trans. Nucl. Sci. 44, 477 (1997), doi: 10.1109/23.603694
- [17] C.W.E. van Eijk, Nucl. Instrum. Methods Phys. Res. A 509, 17 (2003), doi: 10.1016/S0168-9002(03)01542-0
- [18] R.W. Novotny, et al., IEEE Trans. Nucl. Sci. 55, 1283 (2008), doi: 10.1109/TNS.2008.916062
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv131n153kz