PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 1 | 190-192
Article title

Radiaton Effects on TAC-PF Electromagnetic Calorimeter

Content
Title variants
Languages of publication
EN
Abstracts
EN
The proposed particle factory detector for Turkish Accelerator Center (TAC-PF) being a regional facility in Turkey will operate at the center of mass energy about 3.77 GeV with designed luminosity of the order of 10³⁴ cm¯² s¯¹. The electromagnetic calorimeter part of the detector is considered to have PbWO₄ and CsI(Tl) crystals coupled with photodiodes. In this study, the exposed dose rate to electromagnetic calorimeter during PF detector operation was estimated by FLUKA Monte Carlo tool. The irradiation effects such as the change of light yield and light transmission of these crystals were investigated to evaluate TAC-PF electromagnetic calorimeter energy resolution.
Keywords
EN
Year
Volume
131
Issue
1
Pages
190-192
Physical description
Dates
published
2017-01
References
  • [1] I. Tapan, E. Pilicer, F.B. Pilicer, Nucl. Instrum. Methods Phys. Res. A 831, 389 (2016), doi: 10.1016/j.nima.2016.04.064
  • [2] S. Korucuklu, et al., in: Proc. IPAC10, THPD059, (2010) http://accelconf.web.cern.ch/AccelConf/IPAC10/papers/thpd059.pdf
  • [3] R.Y. Zhu, in: Handbook of Particle Detection, Ed. C. Grupen, Springer, Berlin 2012, p. 535, doi: 10.1007/978-3-642-13271-1
  • [4] F. Kocak, Nucl. Instrum. Methods Phys. Res. A 787, 144 (2015), doi: 10.1016/j.nima.2014.11.077
  • [5] Rihua Mao, Liyuan Zhang, Ren-Yuan Zhu, IEEE Trans. Nucl. Sci. 55, 2425 (2008), doi: 10.1109/TNS.2008.2000776
  • [6] S. Agostinelli, et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003), doi: 10.1016/S0168-9002(03)01368-8
  • [7] R.Y. Zhu, J. Phys. Conf. Series 160, 012017 (2009), doi: 10.1088/1742-6596/160/1/012017
  • [8] W. Li, et al., in: Proc. CHEP, 2006, p. 225 http://indico.cern.ch/event/408139/contributions/979815/attachments/815741/1117758/CHEP06-Weidong_Li.pdf
  • [9] A. Ferrari, P.R. Sala, A. Fasso, J. Ranft, FLUKA: a multi-particle transport code, CERN-2005-10, INFN/TC-05/11, SLAC-R-773, (2005), doi: 10.5170/CERN-2005-010
  • [10] P.G. Ping, Chin. Phys. C 32, 599 (2008), doi: 10.1088/1674-1137/32/8/001
  • [11] M. Ablikim and BESIII Collaboration, Nucl. Instrum. Methods Phys. Res. A 614, 345 (2010), doi: 10.1016/j.nima.2009.12.050
  • [12] Rihua Mao, Liyuan Zhang, Ren-Yuan Zhu, IEEE Trans. Nucl. Sci. 59, 2229 (2012), doi: 10.1109/TNS.2012.2192290
  • [13] A. Abashian and BELLE Collaboration, Nucl. Instrum. Methods Phys. Res. A 479, 117 (2002), doi: 10.1016/S0168-9002(01)02013-7
  • [14] Rihua Mao, Liyuan Zhang, Ren-Yuan Zhu, IEEE Trans. Nucl. Sci. 59, 2224 (2012), doi: 10.1109/TNS.2012.2184302
  • [15] E. Pilicer, F. Kocak, I. Tapan, Nucl. Instrum. Methods Phys. Res. A 552, 146 (2005), doi: 10.1016/j.nima.2005.06.021
  • [16] R.W. Novotny, W. Doring, K. Mengel, V. Metag, C. Pienne, IEEE Trans. Nucl. Sci. 44, 477 (1997), doi: 10.1109/23.603694
  • [17] C.W.E. van Eijk, Nucl. Instrum. Methods Phys. Res. A 509, 17 (2003), doi: 10.1016/S0168-9002(03)01542-0
  • [18] R.W. Novotny, et al., IEEE Trans. Nucl. Sci. 55, 1283 (2008), doi: 10.1109/TNS.2008.916062
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv131n153kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.