EN
The aim of this study is to examine the effect of MgO and Y₂O₃ to the carbothermal reduction and nitridation of silica. The synthetic silica, MgO and Y₂O₃ powders were premixed (4wt% MgO-6% Y₂O₃, 5% MgO-5% Y₂O₃ and 6% MgO-4% Y₂O₃) in the starting reactants depending on the final powder composition. Carbon black was added to the silica (SiO₂) above the stoichiometric amount of oxygen (C/SiO₂ ratio of 3). The carbothermal reduction and nitridation process was carried out in a tube furnace at 1400°C, 1450°C, and 1475°C for 3 h under nitrogen gas atmosphere. The synthesized Si₃N₄ powder properties were examined by using X-ray diffraction, scanning electron microscopy-energy dispersive X-ray spectrosopy. In this study, MgO and Y₂O₃ powders dispersed in the final Si₃N₄ powder more homogeneously and thus formable and sinterable the starting mixing material is produced.