Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 1 | 162-164
Article title

The Carbothermal Reduction of Silica with Y₂O₃-MgO Powders

Title variants
Languages of publication
The aim of this study is to examine the effect of MgO and Y₂O₃ to the carbothermal reduction and nitridation of silica. The synthetic silica, MgO and Y₂O₃ powders were premixed (4wt% MgO-6% Y₂O₃, 5% MgO-5% Y₂O₃ and 6% MgO-4% Y₂O₃) in the starting reactants depending on the final powder composition. Carbon black was added to the silica (SiO₂) above the stoichiometric amount of oxygen (C/SiO₂ ratio of 3). The carbothermal reduction and nitridation process was carried out in a tube furnace at 1400°C, 1450°C, and 1475°C for 3 h under nitrogen gas atmosphere. The synthesized Si₃N₄ powder properties were examined by using X-ray diffraction, scanning electron microscopy-energy dispersive X-ray spectrosopy. In this study, MgO and Y₂O₃ powders dispersed in the final Si₃N₄ powder more homogeneously and thus formable and sinterable the starting mixing material is produced.
Physical description
  • [1] Y. Li, L. Wang, S. Yin, F. Yang, Mater. Chem. Phys. 141, 874 (2013), doi: 10.1016/j.matchemphys.2013.06.017
  • [2] L. Zhoua, Y. Huang, Z. Xie, A. Zimmermann, F. Aldinger, J. Europ. Ceram. Soc. 22, 1347 (2002), doi: 10.1016/S0955-2219(01)00438-1
  • [3] R. Shuba, Ph.D. Thesis, Pennsylvania University, 2005
  • [4] H. Ji, Z. Huang, K. Chen, W. Li, Y. Gao, M. Fang, Y. Liu, X. Wu, Powder Technology 252, 51 (2014), doi: 10.1016/j.powtec.2013.10.030
  • [5] A. Ortega, M.D. Alcala, C. Real, J. Mater. Process. Technol. 195, 224 (2008), doi: 10.1016/j.jmatprotec.2007.05.004
  • [6] F.L. Silva, J.M. Vieira, J. Mater. Process. Technol. 92-93, 112 (1999), doi: 10.1016/S0924-0136(99)00184-3
  • [7] H. Arik, J. Europ. Ceram. Soc. 23, 2005 (2003), doi: 10.1016/S0955-2219(03)00038-4
  • [8] E. Kroke, M. Schwarz, Coord. Chem. Rev. 248, 493 (2004), doi: 10.1016/j.ccr.2004.02.001
  • [9] A. Vuckovic, S. Boskovic, B. Matovic, M. Vlajic, V. Krstic, Ceram. Int. 32, 303 (2006), doi: 10.1016/j.ceramint.2005.02.015
  • [10] X. Zhu, Y. Sakka, Y. Zhou, K. Hirao, Acta Mater. 55, 5581 (2007), doi: 10.1016/j.actamat.2007.06.014
  • [11] S. Fünfschilling, T. Fett, M.J. Hoffmann, R. Oberacker, T. Schwind, J. Wippler, T. Böhlke, H. Özcoban, G.A. Schneider, P.F. Becher, J.J. Kruzic, Acta Mater. 59, 3978 (2011), doi: 10.1016/j.actamat.2011.03.023
  • [12] Z.H. Liang, J. Li, L.C. Gui, G.H. Peng, Z. Zhang, G.J. Jiang, Ceram. Int. 39, 3817 (2013), doi: 10.1016/j.ceramint.2012.10.222
  • [13] N. Karakuş, A.O. Kurt, H.Ö. Toplan, Ceram. Int. 35, 2381 (2009), doi: 10.1016/j.ceramint.2009.02.002
  • [14] H.H. Lu, C.Y. Chen, Ceram. Int. 42, 12452 (2016), doi: 10.1016/j.ceramint.2016.05.022
  • [15] A. Saberi, B. Alinejad, Z. Negahdari, F. Kazemi, A. Almasi, Mater. Res. Bull. 42, 666 (2007), doi: 10.1016/j.materresbull.2006.07.020
  • [16] Z. Sun, M. Li, Y. Zhou, J. Europ. Ceram. Soc. 29, 551 (2009), doi: 10.1016/j.jeurceramsoc.2008.07.026
  • [17] D. Li, M. Li, J. Mater. Sci. Technol. 28, 799 (2012), doi: 10.1016/S1005-0302(12)60133-9
  • [18] K. Chen, Z. Huang, Y.G. Liu, M. Fang, J. Huang, Y. Xu, Powder Technol. 235, 728 (2013), doi: 10.1016/j.powtec.2012.11.036
  • [19] X.J. Liu, Z.Y. Huang, Q.M. Ge, X.W. Sun, L.P. Huang, J. Europ. Ceram. Soc. 25, 3353 (2005), doi: 10.1016/j.jeurceramsoc.2004.08.025
  • [20] N. Karakuş, A.O. Kurt, H.Ö. Toplan, Mater. Manufact. Process. 27, 797 (2012), doi: 10.1080/10426914.2011.648252
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.