Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 1 | 124-132

Article title

In Situ Solution Process for Fabricating Thermally and Mechanically Stable Highly Conductive ZnO-CNT Fiber Composites

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
A simple in situ solution process was developed to produce a mechanically and thermally stable ZnO-carbon nanotube fiber composite. ZnO nanoparticles were homogeneously deposited onto the surfaces of and interstices within CNT fibers (between individual CNTs). X-ray photoelectron spectroscopy and Raman analysis revealed that ZnO nanoparticles contained oxygen vacancy defects and CNT fibers included oxygen containing functional group that strongly interacted with Zn. The strong interaction enhanced the mechanical properties of the composite fibers. The Young modulus (20 GPa) and tensile strength (118 MPa) were enhanced compared to the corresponding values of the pristine CNT fibers. The thermal stability was high up to 880°C and light absorption was enhanced across the UV to near IR region in a ZnO-CNT fiber composite. The electrical conductivity of the composite was high up to 954 S/cm despite semiconductor deposition.

Keywords

EN

Contributors

author
  • Department of Chemistry and Bioactive Material Sciences, Research Institute of Physics and Chemistry, Chonbuk National University, Jeonju 561-756, Korea
author
  • Jeonju Center, Korea Basic Science Institute, Jeonju 561-756, Republic of Korea
author
  • Department of Chemistry and Bioactive Material Sciences, Research Institute of Physics and Chemistry, Chonbuk National University, Jeonju 561-756, Korea
  • Textile Engineering, Chemistry and Science, North Carolina State University, 2401 Research Dr., Raleigh, NC 27695-8301, USA

References

  • [1] J. Bae, M.K. Song, Y.J. Park, J.M. Kim, M. Liu, Z.L. Wang, Angew. Chem. Int. Ed. 50, 1683 (2011), doi: 10.1002/anie.201006062
  • [2] Y. Fu, X. Cai, H. Wu, Z. Lv, S. Hou, M. Peng, X. Yu, D. Zou, Adv. Mater. 24, 5713 (2012), doi: 10.1002/adma.201202930
  • [3] S. Pan, Z. Yang, P. Chen, X. Fang, G. Guan, Z. Zhang, J. Deng, H. Peng, J. Phys. Chem. C 118, 16419 (2014), doi: 10.1021/jp410402w
  • [4] X. Xiao, T. Li, P. Yang, Y. Gao, H. Jin, W. Ni, W. Zhan, X. Zhang, Y. Cao, J. Zhong, L. Gong, W.-C. Yen, W. Mai, J. Chen, K. Huo, Y.-L. Chueh, Z.L. Wang, J. Zhou, ACS Nano 6, 9200 (2012), doi: 10.1021/nn303530k
  • [5] J. Ren, L. Li, C. Chen, X. Chen, Z. Cai, L. Qiu, Y. Wang, X. Zhu, H. Peng, Adv. Mater. 25, 1155 (2013), doi: 10.1002/adma.201203445
  • [6] Y. Meng, Y. Zhao, C. Hu, H. Cheng, Y. Hu, Z. Zhang, G. Shi, L. Qu, Adv. Mater. 25, 2326 (2013), doi: 10.1002/adma.201300132
  • [7] F. Vollrath, D.P. Knight, Nature 410, 541 (2001), doi: 10.1038/35069000
  • [8] Z. Xu, C. Gao, Macromolecules 43, 6716 (2010), doi: 10.1021/ma1009337
  • [9] W. Kylberg, F.A.D. Castro, P. Chabrecek, U. Sonderegger, B.T.T. Chu, F. Nüesch, R. Hany, Adv. Mater. 23, 1015 (2011), doi: 10.1002/adma.201003391
  • [10] J.A. Lee, M.K. Shin, S.H. Kim, H.U. Cho, G.M. Spinks, G.G. Wallace, M.D. Lima, X. Lepró, M.E. Kozlov, R.H. Baughman, S.J. Kim, Nat. Commun. 4, 1970 (2013), doi: 10.1038/ncomms2970
  • [11] K. Wang, Q. Meng, Y. Zhang, Z. Wei, M. Miao, Adv. Mater. 25, 1494 (2013), doi: 10.1002/adma.201204598
  • [12] N. Behabtu, C.C. Young, D.E. Tsentalovich, O. Kleinerman, X. Wang, A.W.K. Ma, E.A. Bengio, R.F.T. Waarbeek, J.J.D. Jong, R.E. Hoogerwerf, S.B. Fairchild, J.B. Ferguson, B. Maruyama, J. Kono, Y. Talmon, Y. Cohen, M.J. Otto, M. Pasquali, Science 339, 182 (2013), doi: 10.1126/science.1228061
  • [13] H. Sun, X. You, J. Deng, X. Chen, Z. Yang, J. Ren, H. Peng, Adv. Mater. 26, 2868 (2014), doi: 10.1002/adma.201305188
  • [14] H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi, Z. Gu, Nano Lett. 8, 2664 (2008), doi: 10.1021/nl800925j
  • [15] C. Yuan, X. Zhang, L. Su, B. Gao, L. Shen, J. Mater. Chem. 19, 5772 (2009), doi: 10.1039/B902300C
  • [16] C.-C. Hu, K.-H. Chang, M.-C. Lin, Y.-T. Wu, Nano Lett. 6, 2690 (2006), doi: 10.1021/nl061576a
  • [17] Z. Chen, V. Augustyn, J. Wen, Y. Zhang, M. Shen, B. Dunn, Y. Lu, Adv. Mater. 23, 791 (2011), doi: 10.1002/adma.201003658
  • [18] J.G. Ok, J.Y. Lee, H.W. Baac, S.H. Tawfick, L.J. Guo, A.J. Hart, ACS Appl. Mater. Interfaces 6, 874 (2014), doi: 10.1021/am404131r
  • [19] C.H. Hsu, H.Y. Liao, P.L. Kuo, J. Phys. Chem. C 114, 7933 (2010), doi: 10.1021/jp100328f
  • [20] B. Wu, D. Hu, Y. Kuang, B. Liu, X. Zhang, J. Chen, Angew. Chem. Int. Ed. 48, 4751 (2009), doi: 10.1002/anie.200900899
  • [21] D. Wang, S. Lu, S.P. Jiang, Electrochim. Acta 55, 2964 (2010), doi: 10.1016/j.electacta.2010.01.031
  • [22] E. Lorençon, A.S. Ferlauto, S.D. Oliveira, D.R. Miquita, R.R. Resende, R.G. Lacerda, L.O. Ladeira, ACS Appl. Mater. Interfaces 1, 2104 (2009), doi: 10.1021/am900382f
  • [23] S. Guo, X. Pan, H. Gao, Z. Yang, J. Zhao, X. Bao, Chem. Eur. J. 16, 5379 (2010), doi: 10.1002/chem.200902371
  • [24] A. Zamudio, A.L. Elías, J.A. Rodríguez-Manzo, F. López-Urías, G. Rodríguez-Gattorno, F. Lupo, M. Rühle, D.J. Smith, H. Terrones, D. Díaz, M. Terrones, Small 2, 346 (2006), doi: 10.1002/smll.200500348
  • [25] M.M. Hossain, A.H.A. Mamun, J.R. Hahn, J. Phys. Chem. C 116, 23153 (2012), doi: 10.1021/jp3079666
  • [26] H. Shima, M.M. Hossain, J.R. Hahn, RSC Adv. 4, 41204 (2014), doi: 10.1039/C4RA06782G
  • [27] Y. Bu, Z. Chen, W. Li, B. Hou, ACS Appl. Mater. Interfaces 5, 12361 (2013), doi: 10.1021/am403149g
  • [28] J. Lee, Y. Jung, J. Song, J.S. Kim, G.-W. Lee, H.J. Jeong, Y. Jeong, Carbon 50, 3889 (2012), doi: 10.1016/j.carbon.2012.04.033
  • [29] B.H. Bairamov, A. Heinrich, G. Irmer, V.V. Toporov, E. Ziegler, Phys. Status Solidi B 119, 227 (1983), doi: 10.1002/pssb.2221190126
  • [30] D.I. Son, B.W. Kwon, D.H. Park, W.S. Seo, Y. Yi, B. Angadi, C.-L. Lee, W.K. Choi, Nat. Nanotechnol. 7, 465 (2012), doi: 10.1038/nnano.2012.71
  • [31] M. Rajalakshmi, A.K. Arora, B.S. Bendre, S. Mahamuni, J. Appl. Phys. 87, 2445 (2000), doi: 10.1063/1.372199
  • [32] J.M. Calleja, M. Cardona, Phys. Rev. B 16, 3753 (1977), doi: 10.1103/PhysRevB.16.3753
  • [33] C.A. Arguello, D.L. Rousseau, S.P.S. Porto, Phys. Rev. 181, 1351 (1969), doi: 10.1103/PhysRev.181.1351
  • [34] A. Zaoui, W. Sekkal, Phys. Rev. B 66, 174106 (2002), doi: 10.1103/PhysRevB.66.174106
  • [35] T. Ohshima, Y. Murakami, H. Kawasaki, Y. Suda, Y. Yagyu, Jpn. J. Appl. Phys. 50, 8S1 (2011), doi: 10.1143/JJAP.50.08JD09
  • [36] J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, Y. Dai, ACS Appl. Mater. Interfaces 4, 4024 (2012), doi: 10.1021/am300835p
  • [37] Y. Lv, L. Yu, H. Huang, Y. Feng, D. Chen, X. Xie, Nanotechnology 23, 065402 (2012), doi: 10.1088/0957-4484/23/6/065402
  • [38] M. Salavati-Niasari, F. Davar, M. Bazarganipour, Dalton Trans. 39, 7330 (2010), doi: 10.1039/B923416K
  • [39] K. Jayanthi, M. Sunkara, S. Chawla, J. Phys. D Appl. Phys. 46, 325101 (2013), doi: 10.1088/0022-3727/46/32/325101
  • [40] C.-C. Teng, C.-C.M. Ma, C.-H. Lu, S.-Y. Yang, S.-H. Lee, M.-C. Hsiao, M.-Y. Yen, K.-C. Chiou, T.-M. Lee, Carbon 49, 5107 (2011), doi: 10.1016/j.carbon.2011.06.095
  • [41] Y.-P. Zhu, M. Li, Y.-L. Liu, T.-Z. Ren, Z.-Y. Yuan, J. Phys. Chem. C 118, 10963 (2014), doi: 10.1021/jp502677h
  • [42] X. Zhou, Y. Li, T. Peng, W. Xie, X. Zhao, Mater. Lett. 63, 1747 (2009), doi: 10.1016/j.matlet.2009.05.018
  • [43] Q. Zhang, T.P. Chou, B. Russo, S.A. Jenekhe, G. Cao, Adv. Funct. Mater. 18, 1654 (2008), doi: 10.1002/adfm.200701073

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv131n135kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.