Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
Nd_{0.20}Sm_{x}Ce_{0.8-x}O_{1.9-x/2} (x=0, 0.05, 0.10, 0.15, 0.20) rare-earth-co-doped ceria electrolytes were synthesized by polyol process. Acetate compounds of cerium and dopants (Nd, Sm) were used as starting materials and triethylene glycol was used as a solvent. Structural and ionic conductivity properties of the electrolyte systems were determined by applying characterization techniques such as X-ray diffraction, the Fourier transform infrared spectroscopy, scanning electron microscope, and electrochemical impedance spectroscopy. The results of X-ray diffraction indicated that a single-phase fluorite structure formed at the relatively low calcination temperature of 600°C. So, the samples were calcined at 600°C for 4 h and then sintered at 1400°C for 6 h to obtain dense ceramics (between 85 and 90%). The two-probe ac impedance spectroscopy was used to study the total ionic conductivity of doped and co-doped ceria samples. The results of the impedance spectroscopy indicate that the Nd_{0.20}Sm_{0.05}Ce_{0.75}O_{1.875} composition exhibited highest ionic conductivity value, 3.60×10¯² S cm¯¹ at 800°C.
Keywords
Discipline
Journal
Year
Volume
Issue
Pages
78-81
Physical description
Dates
published
2017-01
Contributors
author
- Istanbul University, Faculty of Engineering, Department of Metallurgical and Materials Engineering, 34320 Istanbul, Turkey
author
- Istanbul University, Faculty of Engineering, Department of Chemical Engineering, 34320 Istanbul, Turkey
author
- Istanbul University, Faculty of Engineering, Department of Chemical Engineering, 34320 Istanbul, Turkey
author
- Istanbul University, Faculty of Engineering, Department of Chemical Engineering, 34320 Istanbul, Turkey
References
- [1] R.C. Biswal, K. Biswas, Int. J. Hydrogen En. 40, 509 (2015), doi: 10.1016/j.ijhydene.2014.10.099
- [2] A. Gondolini, E. Mercadelli, A. Sanson, S. Albonetti, L. Doubova, S. Boldrini, J. Eur. Ceram. Soc. 33, 67 (2013), doi: 10.1016/j.jeurceramsoc.2012.08.008
- [3] H. Inaba, H. Tagawa, Solid State Ion. 83, 1 (1996), doi: 10.1016/0167-2738(95)00229-4
- [4] J.A. Kilner, Solid State Ion. 129, 13 (2000), doi: 10.1016/S0167-2738(99)00313-6
- [5] S. Ramesh, V.P. Kumar, P. Kistaiah, C. Vishnuvardhan Reddy, Solid State Ion. 181, 86 (2010), doi: 10.1016/j.ssi.2009.11.014
- [6] Y. Liu, B. Li, X. Wei, W.J. Pan, J. Am. Ceram. Soc. 91, 3926 (2008), doi: 10.1111/j.1551-2916.2008.02748.x
- [7] Y.F. Zheng, H.T. Gu, H. Chen, L. Gao, X.F. Zhu, L.C. Guo, Mater. Res. Bull. 44, 775 (2009), doi: 10.1016/j.materresbull.2008.09.021
- [8] H. Yoshida, T. Inagaki, K. Miura, M. Inaba, Z. Ogumi, Solid State Ion. 160, 109 (2003), doi: 10.1016/S0167-2738(03)00153-X
- [9] B.C.H. Steele, Solid State Ion. 129, 95 (2000), doi: 10.1016/S0167-2738(99)00319-7
- [10] S.H. Ng, D.I. dos Santos, S.Y. Chew, D. Wexler, J. Wang, S.X. Dou, H.K. Liu, Electrochem. Commun. 9, 915 (2007), doi: 10.1016/j.elecom.2006.12.007
- [11] C. Ho, J.C. Yu, T. Kwong, A.C. Mak, S. Lai, Chem. Mater. 17, 4514 (2005), doi: 10.1021/cm0507967
- [12] G. Dönmez, V. Sarıboğa, T.G. Altınçekiç, M.A.F. Öksüzömer, J. Am. Ceram. Soc. 98, 501 (2015), doi: 10.1111/jace.13300
- [13] S. Ramesh, G. Upender, K.C.J. Raju, G. Padmaja, S.M. Reddy, C.V. Reddy, J. Mod. Phys. 4, 859 (2013), doi: 10.4236/jmp.2013.46116
- [14] D. Maity, S.N. Kale, R. Kaul-Ghanekar, J. Xue, J. Ding, J. Magn. Magn. Mater. 321, 3093 (2009), doi: 10.1016/j.jmmm.2009.05.020
- [15] F.Y. Wang, S. Chen, S. Cheng, Electrochem. Commun. 6, 743 (2004), doi: 10.1016/j.elecom.2004.05.017
- [16] S. Dikmen, H. Aslanbay, E. Dikmen, O. Sahin, J. Power Sources 195, 2488 (2010), doi: 10.1016/j.jpowsour.2009.11.077
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv131n123kz