Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 1 | 68-70

Article title

Design of Pressure Sensor Based on Two-Dimensional Photonic Crystal

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this work, we design a new pressure sensor based on two-dimensional photonic crystal waveguide coupled to a point-defect resonant microcavity. The mechanism of sensing is based on the change of the germanium refractive index as function of the hydrostatic pressure P. The resonant wavelength will shift when pressure variation induces change in the refractive indexes of the structure. The pressure variation causes the shifting of defect modes. The properties of the refractive index sensor are simulated using the finite-difference time-domain algorithm and the plane wave expansion method. These kinds of sensors have many advantages in compactness, high sensitivity, and various choices of materials.

Keywords

Contributors

author
  • Laboratoire d'Analyse des Signaux et Systèmes, Electronics Department P. 166, Route Ichebilia, Université Mohamed Boudiaf de M'sila, M'sila 28000, Algeria
author
  • Laboratoire d'Analyse des Signaux et Systèmes, Electronics Department P. 166, Route Ichebilia, Université Mohamed Boudiaf de M'sila, M'sila 28000, Algeria
author
  • Laboratoire d'Analyse des Signaux et Systèmes, Electronics Department P. 166, Route Ichebilia, Université Mohamed Boudiaf de M'sila, M'sila 28000, Algeria
author
  • Laboratoire d'Analyse des Signaux et Systèmes, Electronics Department P. 166, Route Ichebilia, Université Mohamed Boudiaf de M'sila, M'sila 28000, Algeria

References

  • [1] J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed., Princeton University Press, Princeton (NJ) 2008
  • [2] A. Hocini, A. Harhouz, J. Nanophoton. 10, 016007 (2016), doi: 10.1117/1.JNP.10.016007
  • [3] A. Harhouz, A. Hocini, J. Electromagn. Wave Appl. 29, 659 (2015), doi: 10.1080/09205071.2015.1012597
  • [4] T. Stomeo, M. Grande, A. Qualtieri, A. Passaseo, A. Salhi, M. De Vittorio, D. Biallo, A. D'orazio, M. de Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, Microelectron. Eng. 84, 1450 (2007), doi: 10.1016/j.mee.2007.01.227
  • [5] A. Kahlouche, A. Hocini, D. Khedrouche, J. Comp. Electron. 13, 490 (2014), doi: 10.1007/s10825-014-0559-y
  • [6] A.R. Goni, K. Syassen, M. Cardona, Phys. Rev. B 41, 10104 (1990), doi: 10.1103/PhysRevB.41.10104
  • [7] H.K. Mao, Science 200, 1145 (1978), doi: 10.1126/science.200.4346.1145
  • [8] M. Kobayashi, T. Nagahama, Y. Nisida, in: Proc. 18th Int. Conf. on the Physics of Semiconductors, Stockholm 1986, Ed. O.Engstrom, World Scientific, Singapore 1986
  • [9] Shangbin Tao, Deyuan Chen, Juebin Wang, Jing Qiao, Yali Duan, Photon. Sens. 6, 137 (2016), doi: 10.1007/s13320-016-0316-x

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv131n120kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.