PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 1 | 10-12
Article title

Prediction of First Order Focusing Properties of Ideal Hemispherical Deflector Analyzer Using Artificial Neural Network

Content
Title variants
Languages of publication
EN
Abstracts
EN
Electrostatic energy analyzers are irreplaceable instruments to analyze the electron beams energies. In this context, the knowledge of electron trajectories in electrostatic energy analyzers has major importance in collision physics as well as in different scientific instruments for surface science. In this study, electron trajectories for different energies in an ideal field 180° hemispherical deflector analyzer are investigated by artificial neural network prediction method. The SIMION 8.1 simulation program is used as a data source for training and testing of artificial neural network. Artificial neural network based prediction has been performed using Matlab R2012b program. Obtained performance results indicate that this approach provides new perspectives for the rapid solution to the problems in charged particle optics.
Keywords
EN
Year
Volume
131
Issue
1
Pages
10-12
Physical description
Dates
published
2017-01
References
  • [1] H. Wollnik, Nucl. Instrum. Methods 52, 250 (1967), doi: 10.1016/0029-554X(67)90229-7
  • [2] D. Roy, J.D. Carette, Can. J. Phys. 49, 2118 (1971), doi: 10.1139/p71-259
  • [3] R.E. Imhof, A. Adams, G.C. King, J. Phys. E Sci. Instrum. 9, 138 (1976), doi: 10.1088/0022-3735/9/2/024
  • [4] H. Ibach, Electron Spectroscopy for Surface Analysis, Springer-Verlag, Berlin 1977, p. 13, doi: 10.1007/978-3-642-81099-2
  • [5] Y. Ballu, Applied Charged Particle Optics, Part B, Academic, New York 1980, p. 257
  • [6] H. Goldstein, V. Twersky, Physics Today 5, 19 (1952), doi: 10.1063/1.3067728
  • [7] M.E. Rudd, in: Low Energy Electron Spectrometry, Ed. K.D. Sevier, Wiley, New York 1972, p. 17
  • [8] E.M. Purcell, Phys. Rev. 54, 818 (1938), doi: 10.1103/PhysRev.54.818
  • [9] R. Herzog, Z. Phys. 97, 596 (1935), doi: 10.1007/bf01333901
  • [10] K. Jost, J. Phys. E Sci. Instrum. 12, 1001 (1979), doi: 10.1088/0022-3735/12/10/026
  • [11] B.A. Gurney, W. Ho, L.J. Richter, J.S. Villarrubia, Rev. Sci. Instrum. 59, 22 (1988), doi: 10.1063/1.1140015
  • [12] N. Mårtensson, P. Baltzer, P.A. Brühwiler, J.-O. Forsell, A. Nilsson, A. Stenborg, B. Wannberg, J. Electron Spectrosc. Relat. Phenom. 70, 117 (1994), doi: 10.1016/0368-2048(94)02224-n
  • [13] O. Sise, G. Martinez, T.J.M. Zouros, M. Ulu, M. Dogan, J. Electron. Spectrosc. Relat. Phenom. 177, 42 (2010), doi: 10.1016/j.elspec.2010.01.003
  • [14] A.H. Isik, Acta Phys. Pol. A 127, 1317 (2015), doi: 10.12693/APhysPolA.127.1317
  • [15] A.H. Isik, N. Isik, Acta Phys. Pol. A 129, 514 (2016), doi: 10.12693/APhysPolA.129.514
  • [16] A.H. Isik, Acta Phys. Pol. A 127, 1717 (2015), doi: 10.12693/APhysPolA.127.1717
  • [17] N. Isik, Microsc. Microanal. 22, 458 (2016), doi: 10.1017/S1431927616000118
  • [18] N. Isik, A.H. Isik, Acta Phys. Pol. A 129, 628 (2016), doi: 10.12693/APhysPolA.129.628
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv131n102kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.